Solution-Compatible Synthesis of C_{60} Fragmentary Octacycles

N. Yoshida, et al., Eur. J. Org. Chem. 2023, e202300407. Doi: 10.1002/ejoc. 202300407

General background: C60-fragments include the monumental Corannulene, Sumanene, and Truxene, those three have served as leading molecules in ongoing research for curved, fused, and pi-extended polyaromatic molecules.

Our background: Relevant synthesis to manipulating non-planarity in dibenzo[g,p]chrysene was studied, and the hexacycle was flexibly movable in a range of 25°. Can carbon atoms bridge over the Bay?

32°
S. Kamiguchi, et al., Tetrahedron Lett. 2022, 92, 153664.

Can carbon atoms bridge over the Bay?: Our strategy lies in solutionphase bottom-up approach, in which Friedel-Crafts intra-molecular cyclization gives an opportunity of forming a C_{60} fragmentary octacycle.

Scalable preparation of starting dibromo-DBCs: The readily

 commercially available 2,7-di-tert-butyl-fluorenes were employed, and four steps achieved more than 100 grams of the isomers.

The first synthesis of a C_{60} fragmentary octacyclic framework:

Conventional Friedel-Crafts alkylation was successfully carried out.

X-ray structure, result of a saddle-shaped octacycle: Indeed, we

 were very happy to confirm $s p^{3}$-carbons tying two Bay-aryls.

$R_{1}=0.0721, w R_{2}=0.2178, \mathrm{GOF}=1.086$
Torsion angle, 20.03(11) ${ }^{\circ}$
(Computational, 21.56 ${ }^{\circ}$)

Can sp²-carbons tie the two Bay-aryls?

- Yes, carbonyls can bridge across the Bay-regions.

${ }^{13} \mathrm{C}$ NMR

200	180	160	140	120	100 δ / ppm	80	60	40	20
0									

X-ray structure, result of a saddle-shaped octacycle: Indeed, we were glad to confirm carbonyls tying the two Bay-aryls.

Monoclinic, space group P 1 2/c 1 $R_{1}=0.0733, w R_{2}=0.2156, \mathrm{GOF}=1.067$

Torsion angle, 20.83(12) ${ }^{\circ}$ (Computational, 20.90 ${ }^{\circ}$)

Deprotection of two carbonyls and fourfold alkyls: Synthesis of 4,11-dihydrodiindeno[7,1,2-ghi:7',1',2'-pqr]chrysene was achieved.

$\mathrm{C}_{2} \mathrm{Cl}_{2}$
f .
h
O

89 h then, water 74\%

(HNMR
${ }^{13} \mathrm{C}$ NMR

X-ray structure, a result of gently curved saddle-shape: Prepared by slow evaporation of $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ solution of the sample (3 mg).

CCDC 2207864
Monoclinic, space group P 1 2/c 1
$R_{1}=0.0450, w R_{2}=0.1329, \mathrm{GOF}=1.134$
Torsion angle, 19.89(6) ${ }^{\circ}$
(Computational, 18.56°)

Packing views of an unsubstituted octacycle: The unsubstituted is totally and interestingly square to each array.

Packing views of the octacycle: The diketone is formed in a zig-zag. The interlayer distance is the mostly same as that of the unsubstituted.
(a)

(b)

(c)

13

Energy difference between D_{2} (twisted) and $C_{2 h}$ (saddled) symmetry of the DFT-optimized ones: The twisted form is $1.9 \mathrm{kcal} / \mathrm{mol}$ stable as compared to the saddle shape (a hydrogen bonding, $2 \sim 7 \mathrm{kcal} / \mathrm{mol}$).
D_{2} (Twisted)
$C_{2 h}$ (Saddle)

Energy difference [kcal/mol]
Point group
Metelykene
Metelykenone
D_{2} (Twisted)
-1.87
-1.94
$C_{2 h}$ (Saddle)
0
0

Frontier orbitals mappings and energies, calculated at the B3LYP/ $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Summary: The straightforward synthesis of C_{60} fragmentary octacycles has been achieved. The formation of two five-membered rings along with crystallographic analyses stands alone in the area of synthetic chemistry.

N. Yoshida, et al., Eur. J. Org. Chem. 2023, e202300407. Doi: 10.1002/ejoc. 202300407

