# Solution-Compatible Synthesis of C<sub>60</sub> Fragmentary Octacycles





N. Yoshida, et al., Eur. J. Org. Chem. 2023, e202300407. Doi: <u>10.1002/ejoc.202300407</u>

**General background:** C60-fragments include the monumental <u>*Corannulene*</u>, <u>*Sumanene*</u>, and <u>*Truxene*</u>, those three have served as leading molecules in ongoing research for curved, fused, and pi-extended polyaromatic molecules.



**Our background:** Relevant synthesis to manipulating non-planarity in dibenzo[*g*,*p*]chrysene was studied, and the hexacycle was flexibly movable in a range of 25°. *Can carbon atoms bridge over the Bay?* 



S. Kamiguchi, et al., Tetrahedron Lett. 2022, 92, 153664.

*Can carbon atoms bridge over the Bay?* : Our strategy lies in solutionphase bottom-up approach, in which Friedel-Crafts intra-molecular cyclization gives an opportunity of forming a C<sub>60</sub> fragmentary octacycle.





Readily Commercially Available (BLD ¥ 54900 / 500 g)

# Scalable preparation of starting dibromo-DBCs: The readily commercially available 2,7-di-*tert*-butyl-fluorenes were employed, and four steps achieved more than 100 grams of the isomers.



#### The first synthesis of a C<sub>60</sub> fragmentary octacyclic framework:

Conventional Friedel-Crafts alkylation was successfully carried out.



**X-ray structure, result of a** *saddle***-shaped octacycle:** Indeed, we were very happy to confirm *sp*<sup>3</sup>-carbons tying two *Bay*-aryls.



#### Can sp<sup>2</sup>-carbons tie the two Bay-aryls?

— Yes, carbonyls can bridge across the *Bay*-regions.



# **X-ray structure, result of a saddle-shaped octacycle**: Indeed, we were glad to confirm *carbonyl*s tying the two *Bay*-aryls.







**Deprotection of two carbonyls and fourfold alkyls:** Synthesis of 4,11dihydrodiindeno[7,1,2-ghi:7',1',2'-pqr]chrysene was achieved.



**X-ray structure, a result of gently curved saddle-shape**: Prepared by slow evaporation of CH<sub>3</sub>CN (6 mL) solution of the sample (3 mg).









CCDC 2207864 Monoclinic, space group P 1 2/c 1  $R_1 = 0.0450, wR_2 = 0.1329, \text{GOF} = 1.134$ Torsion angle, 19.89(6)° (Computational, 18.56°)

Energy difference between  $D_2$  (twisted) and  $C_{2h}$  (saddled) symmetry of the DFT-optimized ones: The twisted form is 1.9 kcal/mol stable as compared to the saddle shape (a hydrogen bonding, 2 ~ 7 kcal/mol).

## D<sub>2</sub> (Twisted)

### C<sub>2h</sub> (Saddle)



| Point group                     | Energy difference [kcal/mol] |              |
|---------------------------------|------------------------------|--------------|
|                                 | Metelykene                   | Metelykenone |
| <b>D</b> <sub>2</sub> (Twisted) | -1.87                        | -1.94        |
| C <sub>2h</sub> (Saddle)        | 0                            | 0            |

**Summary:** The straightforward synthesis of  $C_{60}$  fragmentary octacycles has been achieved. The formation of two five-membered rings along with crystallographic analyses stands alone in the area of synthetic chemistry.



N. Yoshida, et al., Eur. J. Org. Chem. 2023, e202300407. Doi: 10.1002/ejoc.202300407

WILEY VCH