Relevant Synthesis to Manipulating Non-Planarity in Dibenzo[g,p]chrysene: Substitution Reactions at the Bay

min. torsion angle, 31.8°
S. Kamiguchi, R. Akasaka, N. Yoshida, T. Imai, Y. Yamaoka, T. Amaya, T. Iwasawa, Tetrahedron Lett. 2022, 92, 153664.

General Background: Reports about DBC synthesis have been underrepresented so far, compared to Perylene etc.

Background: DBC moiety has an essential characteristic structure that possesses a non-planar pi-conjugation.

Approach: Is it possible to manipulate the non-planarity with torsion angles? Different non-planarity could provide different chemical property.

In real, synthesis of the starting tetra-bromide: Substitution of tert-Bu groups proceeded in gram-scale, although the products didn't show good solubility against my expectation.

Iso-propyl version: the moieties attained much better solubility than the tert-Bu groups. Torsion angles between $i-\mathrm{Pr}$ and t-Bu substructures are the mostly same (56).

Activation by organolithium reagents: the lithium-halogen exchange reactions occurred smoothly, which enabled the desired substitution reactions.

torsion angle, 56.0°

torsion angle, 57.2°

CCDC 2093676: Monoclinic
$R_{1}=0.0484$, GOF $=1.034$

side view from the fjord region

side view from the bay region

Me groups: Attaching the methyl groups into the bay regions was successful without the electrophilic Mel.

torsion angle, 56.0°
torsion angle, 55.4 ${ }^{\circ}$

CCDC 2119962: Monoclinic $R_{1}=0.0636, \mathrm{GOF}=1.117$

side view from the fjord region

side view from the bay region

The much bulky substituent of $\mathrm{SO}_{2} \mathrm{Me}$ groups were successfully induced into the bay: its torsion angle of 57.4° was comparable to that of 57.2° in the SMe moieties.

torsion angle, 57.2°

torsion angle, 57.4

CCDC 2093960: Triclinic
$R_{1}=0.0427, \mathrm{GOF}=1.070$

side view from the fjord region

side view from the bay region

Double pentagons formation: We made a contrastive synthesis in which two five-membered rings were formed with the aid of silicon atoms.

CCDC 2111352: Orthorhombic
$R_{1}=0.0431, \mathrm{GOF}=1.072$

side view from the fjord region

side view from the bay region

Correlation between substituents and torsion angles.

At least 26° can change in the angle: The DBC core has turned out to be flexibly movable in the range from 57° to 32°.

