Cavitands in Catalysis

Evaluation of the Catalytic Capability of cis- and trans-Diquinoxaline Spanned Cavitands

Abstract: Three new cis-diquinoxaline spanned cavitands were successfully synthesized. These cis-diphosphinated derivatives were applied in homogeneous gold-catalyzed dimerization and hydration of alkynes as well as rhodium-catalyzed styrene hydroformylation. The results were ranked with those obtained with their trans-diphosphinated isomeric analogues. The structure-activity relationship employing these two cavitands reveals that the cis- or trans-positioning of the catalyst centers directly influences cooperation between the two metallic atoms to control catalytic activity, reaction profile, and product selectivity. This comparative study provides us an intellectual basis for future catalytic cavitand chemistry and homogeneous catalysis.

Introduction

Resorcin[4]arene-cavitand, able to carry out a catalytic reaction, is an important supramolecule that mimics enzymatic catalysis and achieves marvelous chemical transformations from the viewpoint of green chemistry.[1–3] The cavitands have strong resemblances in two points to natural enzymes: one, cavitands are partly open, guest substrates readily fill the space, enter and leave; the second, cavitands are endowed with gently curved concave large enough to accommodate catalytic centers. Despite the relevant role played by catalytic cavitands, such a class of cavitands is underrepresented owing to synthetic difficulties.[4,5] To make supramolecular cavitands those weigh over MW ca. 1000 preparatively in pure form is a basically embarrassing synthesis. When we attempt to introduce reactive centers inside the hydrophobic pockets, isomeric production of in- and outwardly oriented cavitands towards the pockets often occurs. Hence, we chemists are always struggling to understand even basic aspect of cavitand catalysis.[6] It might be quite a challenge for us to imitate enzymatic virtue that Mother Nature has meticulously created for more than long, long four billion years, because synthetic chemistry has been in just one or two hundred year-period history since Friedrich Wöhler synthesized urea from ammonium cyanate.[7,8]

Recently, we have developed for catalytic applications trans-di-quinoxaline-spanned resorcin[4]arenes.[9] An introverted bis-gold cavitand was efficient in the dimerization of two different terminal alkynes.[10] Another type of gold cavitand, in which a...
Lewis acid gold cation was associated to a Lewis basic P=O moiety, displayed high regio-selectivities in addition of H2Ot o unsymmetrical alkynes; for example, 3-octanone was yielded in 91% starting from 3-octyne.\(^{[11]}\) Although the advantage of cavitand catalysis in selective transformations are obvious, yet a study of structure-activity relationship is not obvious enough. Particularly, from the viewpoint of basic research, comprehension of mechanistic aspects awaits upgrading. Herein we report a structure-activity relationship of phosphinated cavitands in transition metal-catalysis. We prepared new cis-type P(III) (1 and 2) and mixed P(III)/P(V) (3) extended cavitands, which are structurally similar to previously reported trans-type 4, 5, and 6 (Figure 1): those are used as ligands in gold- and rhodium-catalysis. The question we pursue here is “How does the difference between these trans- and cis-arrangements affect the catalytic activity and selectivity?”

Results and Discussion

We started to synthesize cis-1 from a reaction between resorcin[4]arene and 2,3-dichloroquinoxaline (Scheme 1(a)). Preparation of cis-positioned di-quinoxaline-spanned resorcin[4]arene was laborious,\(^{[12]}\) and the use of DABCO (1,4-diazabicyclo[2.2.2]octane) and pyridine improved the chemical yield to 22%. The obtained cis-positioned tetra-ol cavitand reacted with P(OCH\(_3\))\(_3\) to give two of the three possible isomers (“out-out”, “in-out”, and “in-in”). The two compounds were carefully separated by silica-gel column chromatography and were isolated in 44% and 22% yield for “out-out” 1 and “in-out” iso-1, respectively (Scheme 1(b)).\(^{[13]}\) Orientation of the lone pair of the phosphorus atoms was deduced from their \(^1\)H NMR spectra. In the case of 1, its \(^1\)H NMR spectrum reveals one doublet located at 3.87 ppm (\(J_{PH} = 8.6\) Hz) for the two “out-out” POC\(_3\)H (Figure 2 (a)); in the spectrum of iso-1, two doublets at 3.87 ppm (\(J_{PH} = 8.6\) Hz) and at 3.20 ppm (\(J_{PH} = 12.6\) Hz), which can be attributed to the two kinds of “in-out” POCH\(_3\) protons (Figure 2 (b)). The latter upfield-shifted doublet (\(\delta = 3.20\) ppm) results from anisotropic effects of the aromatic \(\pi\) clouds; thus, the OCH\(_3\) group resides inside. Consequently, in cavitand 1, the two POCH\(_3\) moieties pointed outside: this was similar observation to previously reported cavitands 4 (\(\delta = 3.97\) ppm, \(J_{PH} = 8.7\) Hz, Figure 2 (c)) and iso-4 in Figure 3 (\(\delta = 3.98\) ppm, \(J_{PH} = 8.3\) Hz and \(\delta = 3.10\) ppm, \(J_{PH} = 12.4\) Hz, Figure 2 (d)). Oxidation of only one phosphorus atom of 1 was carried out in the use of 1.0 equivalent mCPBA (meta-chloroperbenzoic acid), and 3 was isolated in 30% yield (Scheme 1(c)).\(^{[14]}\) The cis-tetra-ol platform also reacted with P[N(CH\(_3\))\(_2\)]\(_3\), and a mostly single spot on TLC was observed, and desired 2 was obtained in 40% yield in pure form (Scheme 1(a)); in the \(^1\)H NMR spectrum of 2, there is one

![Scheme 1](https://example.com/scheme1.png)

Scheme 1. (a) Synthesis of cis-1 and cis-2; (b) iso-1 bearing both inward- and outward POCH\(_3\) groups; (c) synthesis of cis-3 (mCPBA = meta-chloroperbenzoic acid).

![Figure 2](https://example.com/figure2.png)

Figure 2. Portions of \(^1\)H NMR spectra (400 MHz, CDCl\(_3\)) of (a) 1, (b) iso-1, (c) 4, (d) iso-4. The peaks labeled with circles and triangles correspond to inward- and outward-oriented POCH\(_3\), respectively.
doublet peak located at 2.76 ppm with $^3J_{\text{HH}} = 10.5$ Hz that can be attributed to PN(CH$_3$)$_2$. As previously reported, we observed trans-5 as a single isomer, due to steric reason, with similar 2.81 ppm with $^3J_{\text{HH}} = 10.5$ Hz, and ensured that two PN(CH$_3$)$_2$ groups clearly point outside on the basis of crystallographic analysis; thus, two PN(CH$_3$)$_2$ bonds of cis-2 were inferred to direct outwardly.[15]

Figure 3. Structures of (a) iso-4 that has both in- and outside P-OMe, and (b) mono-phosphoramidite 8 that was flanked by three quinoxalines.

The conformational flexibility of tetra-quinoxaline-spanned resorcin[4]arenes is well known, and can fluctuate between vase (close) and kite (open) conformations.[16] The conformation of the related cavitands is deduced from its 1H NMR spectra, because the chemical shift of methine protons directly beneath quinoxaline moieties explains vase or kite form. A chemical shift at around 5.5 ppm indicates a vase conformer, whereas a chemical shift at ca. 3.7 ppm expresses a kite version. For our four new compounds (1, iso-1, 2 and 3), 1H NMR investigations carried out in CDCl$_3$ and [D$_8$]toluene, clearly indicate a vase conformation of the cavitands; the methine protons appear at 5.73 (1), 5.76 and 5.71 (iso-1), 5.70 (2), 5.79–5.71 (3) ppm in CDCl$_3$, and at 6.14 (1), 6.15 and 6.08 (iso-1), 6.15 (2) and 6.20 and 6.11 (3) ppm in [D$_8$]toluene. Then, we had an interest in the difference in π-clouded environment between cis- and trans-walled cavitands. For that, we compared the chemical shifts of the CH$_3$ proton of the POCH$_3$ moieties in cavitands iso-1 and iso-4. As shown in Figure 2 (b) and (d), these $\Delta\delta$ (differences in the chemical shifts between inward- and outward-oriented PO(CH$_3$)$_2$) are 0.66, and 0.88 for iso-1 and iso-4, respectively. This result is important evidence suggesting that the trans-walls create a definite compartment that is more heavily influenced by the π-clouds than the compartment of the cis-walled cavitand.

Phosphites 1 and 3 readily formed complexes with AuCl(S(CH$_3$)$_2$). When Au/P ratios of 1.2:1 in toluene were used, cis-1·(AuCl)$_2$, and cis-3·AuCl complexes were isolated in quantitative and 63 % yields, respectively (Scheme 2). These gold complexes were tested in cross- and homo-dimerization of alkynes. Their performances in catalysis will be ranking with the trans-4·(AuCl)$_2$ and trans-6·AuCl complexes.[9b,17]

Scheme 2. Complexation between cavitands and AuCl(S(CH$_3$)$_2$ for synthesis of (a) 1·(AuCl)$_2$, and (b) 3·AuCl.

For the gold-catalyzed dimerization of terminal alkynes, the runs were carried out using 1 mol-% of cis-1·(AuCl)$_2$, or trans-4·(AuCl)$_2$ complex and 2 mol-% of AgOTf in toluene at room temperature (Scheme 3). In use of cis-1·(AuCl)$_2$ whether for cross-dimerization of ethynylbenzene and 1-octyne (in part (a)) or for homo-dimerization of 1-octyne (in part (b)), only 2-octanone (7c) that results from hydration of 1-octyne was observed in 29 % and 35 % yield, respectively. These results contrast with those observed when the tests were repeated using the trans-4·(AuCl)$_2$ complex. The trans-4·(AuCl)$_2$ formed only dimer products, with a ratio cross-7a/homo-7b= 75:25 (in part (a)) and with >99 % yield of 7b (in part (b)). These results
clearly show the importance of the positioning of the two gold centers on the resorcin[4]arene skeleton. Different bis-gold complexes between cis- and trans-walled cavitands led to different type of active species and catalytic outcome. cis-Positioning phosphorus atoms led to a more open cavitand, which leads to a highly reactive species toward traces of water present in commercially available dry toluene.

Differences in activity and regioselectivity could also be highlighted in the gold-catalyzed hydration of internal alkynes using mixed P(III)/P(V) cavitands, in which the two phosphorus atoms are cis- or trans-positioning, cis-3-AuCl or trans-6-AuCl, respectively (Scheme 4). For hydration of 1-phenyl-1-butene, the cis-3-AuCl led to low activity and selectivity (in part (a)): 1-phenyl-1-butane (7d) and 1-phenyl-2-butane (7e) were obtained in 5 % and 10 % yield, respectively. While repeating the run with trans-6-AuCl, the compounds 7d and 7e were isolated in 2 % and 88 % yield, respectively. A better regioselectivity was also observed when trans-6-AuCl was employed in the hydration of 3-octyne, the ratio 4-octanone (7f)/3-octanone (7g) = 9:91 (in part (b)). The ratio 7f/7g decreased to 46:54 when cis-3-AuCl was used. These results indicate that less anisotropic effect in the cis-cavitand would cause less stabilization effect by π-orbital mixing with reaction process, and that the geometrically open space in cis-form allows various transition-state geometries to lower selectivity.[18]

In a second series of runs, we investigated the influence of the temperature from 60 °C to 140 °C for 5 h in a P/Rh ratio of 2 (Table 2). As general trends, the conversion increases with the temperature up, and the regioselectivity of the catalysis changes from mainly branched aldehyde at low temperature to mainly linear aldehyde at high temperature. For example, in a use of trans-5, conversion of 52 % with 16:84 ratio were observed at 60 °C against a full conversion with 64:36 ratio at 120 °C (entries 8 and 13). For the tests carried out at 140 °C, lower conversions arose from catalyst decomposition (entries 7 and 21). We observed di-phosphane (cis-2 and trans-5) led to higher activities than mono-phosphane 8, especially at low temperature. In fact, at 60 °C, conversions of 59 %, 52 % and 11 % were measured when ligands cis-2, trans-5 and 8 were employed, respectively (entries 1, 8 and 15). Similarly, a higher distribution toward linear aldehyde was observed when cis-2 and trans-5 were used rather than 8, proportion of 35 %, 51 % and 31 % were obtained, respectively (entries 2, 9 and 16). Once the rhodium complexes formed in situ, the catalysts kept the stable state, because similar catalytic outcomes were observed during the first 5 h of reactions at 120 °C (entries 4–6, 11–13 and 18–20). The main differences between cis-2 and trans-5 is respectively, were observed in a P/Rh ratio of 4 (entries 2, 5 and 8). Interestingly, the product distribution of around 7h/7i = 35:65 was not affected by the excess of cis-2, contrary to the other two (entries 1–3). Actually, in the case of trans-5, the P/Rh ratio drastically affects the distribution (entries 4–6): the proportion of branched aldehyde increases with the number of extra-added trans-5. The distributions were mostly the same when trans-5 or 8 was used in P/Rh = 10, the branched was formed in 78 % or 76 %, respectively (entries 6 and 9).

Table 1. Catalytic evaluation of cis-2, trans-5, and 8 in styrene hydroformylation: influence of P/Rh ratios.^[a]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>P/Rh[^b]</th>
<th>Conv./%</th>
<th>Product distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cis-2</td>
<td>4</td>
<td>96</td>
<td>96:4</td>
</tr>
<tr>
<td>2</td>
<td>cis-2</td>
<td>10</td>
<td>100</td>
<td>97:3</td>
</tr>
<tr>
<td>3</td>
<td>trans-5</td>
<td>4</td>
<td>99</td>
<td>37:63</td>
</tr>
<tr>
<td>4</td>
<td>trans-5</td>
<td>10</td>
<td>99</td>
<td>23:78</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>4</td>
<td>64</td>
<td>31:69</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>54</td>
<td>24:76</td>
</tr>
</tbody>
</table>

[a] Reactions were carried out in conditions of Scheme 5 at 80 °C for 24 h. The conversions and products distributions were determined by GC (n-decane as internal standard) and by 1H NMR. [^b] Ratios of phosphorus atom per rhodium atom.

In a second series of runs, we investigated the influence of the temperature from 60 °C to 140 °C for 5 h in a P/Rh ratio of 2 (Scheme 4). The catalytic systems were generated in situ by mixing ligand with Rh(acac)(CO)$_2$ precursor, and hydration (Figure 3, Scheme 5). The catalytic systems were generated in situ by mixing ligand with Rh(acac)(CO)$_2$ precursor, and hydration (Figure 3, Scheme 5). The catalytic systems were generated in situ by mixing ligand with Rh(acac)(CO)$_2$ precursor, and hydration (Figure 3, Scheme 5). The catalytic systems were generated in situ by mixing ligand with Rh(acac)(CO)$_2$ precursor, and hydration (Figure 3, Scheme 5). The catalytic systems were generated in situ by mixing ligand with Rh(acac)(CO)$_2$ precursor, and hydration (Figure 3, Scheme 5).
that cis-2 produced less thermally stable active species than those formed by trans-5, because lower activities were measured at 120 °C and 140 °C (entries 5–7 and 12–14). Actually, at the end of the reaction course in use of cis-2, small amounts of black insoluble materials, presumably rhodium colloids were observed.

Table 2. Catalytic evaluation of cis-2, trans-5, and 8 in styrene hydroformylation: influence of the temperature.[a]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>T/°C</th>
<th>t/h</th>
<th>Conv./%</th>
<th>Product distribution</th>
<th>Linear/%</th>
<th>Branched/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cis-2</td>
<td>60</td>
<td>5</td>
<td>59</td>
<td>33</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>80</td>
<td>5</td>
<td>88</td>
<td>35</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100</td>
<td>5</td>
<td>92</td>
<td>56</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>120</td>
<td>0.5</td>
<td>41</td>
<td>66</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>120</td>
<td>2</td>
<td>48</td>
<td>63</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>120</td>
<td>5</td>
<td>69</td>
<td>65</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>140</td>
<td>5</td>
<td>60</td>
<td>62</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>trans-5</td>
<td>60</td>
<td>5</td>
<td>52</td>
<td>16</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>80</td>
<td>5</td>
<td>75</td>
<td>51</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>100</td>
<td>5</td>
<td>89</td>
<td>58</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>120</td>
<td>0.5</td>
<td>48</td>
<td>56</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>120</td>
<td>2</td>
<td>89</td>
<td>63</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>120</td>
<td>5</td>
<td>100</td>
<td>64</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>140</td>
<td>5</td>
<td>100</td>
<td>64</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>60</td>
<td>5</td>
<td>11</td>
<td>18</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>80</td>
<td>5</td>
<td>40</td>
<td>31</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>100</td>
<td>5</td>
<td>82</td>
<td>58</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>120</td>
<td>0.5</td>
<td>17</td>
<td>56</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>120</td>
<td>2</td>
<td>69</td>
<td>66</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>120</td>
<td>5</td>
<td>91</td>
<td>64</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>140</td>
<td>5</td>
<td>54</td>
<td>68</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

[a] Reactions were carried out in conditions of Scheme 5 with P/Rh = 2 (ratio of phosphorus atom per rhodium atom). The conversion and product distributions were determined by GC (n-decane as internal standard) and by 1H NMR.

From these hydroformylations, the following information of the catalyst systems could be deduced: for 8, due to the steric hindrance, formation of RhL2 complex should be excluded. Generation of singly ligated active species favor the formation of Rh(n3-styrenyl)(8)(CO)2 over the less stable Rh(n-ethylphenyl)(8)(CO)2 species; which means the catalyst favors the formation of the branched aldehyde at low temperature. At high temperature, thermal agitation generates strong steric interactions between the coordinated substrate and cavity wall; such metal confinement favors the formation of the linear aldehyde.

For trans-5, due to the distance between the two phosphorus atoms (9.7 Å based on the crystallographic result of trans-5(AuCl)2), formation of rhodium-chelate complexes should be excluded. Nevertheless, the proximity of two-coordinated rhodium atoms, on the same cavitand, may allow to consider a cooperation between these two metal centers.

In fact, the higher activity and selectivity toward the linear aldehyde regarding 8 are arguments in that sense. Furthermore, when a large excess of trans-5 was used, we can assume that only one atom of rhodium is coordinated to the ligand and the second phosphorus atom remained free: actually, product distributions in trans-5 and 8 were mostly the same. For cis-2, according to molecular modeling, the distance between the two phosphorus atoms (ca. 6.5 Å) was important to allow the formation of rhodium-chelate complexes. The shorter distance, compared to trans-5, should reinforce the cooperation between the two metal centers, which led to a more efficient system as observed at low temperature. However, the shorter distance may be responsible for the low thermal stability and rhodium agglomera-
tion. The cis-2 has wider open cavity than trans-5, so the steric hindrance generated by the two quinoxaline walls was reduced; consequently, the proportion of branched aldehyde might increase. Moreover, in the case of cis-2, according to molecular modeling, the distance between the two phosphorus atoms (ca. 6.5 Å) exclude the formation of rhodium-chelate complexes. The shorter distance, compared to trans-5, should reinforce the cooperation between the two metal centers, which led, as observed at low temperature, to a more efficient catalytic system. However, the shorter distance between the two rhodium atoms and the more open structure may be responsible at high temperature for the lower stability for the active species. Their degradation led to the formation of rhodium-rhodium bonds and in fine to the formation of colloids.

Conclusions

In summary, three cavitands having a cis-arrangement of two quinoxaline walls (cis-1, –2, and –3) were successfully synthesized. These cavitands, in which two catalytic centers are inwardly oriented, provide new architecture for transition metal catalysis. Gold-catalyzed dimerization and hydration of alkynes and rhodium-catalyzed styrene hydroformylation were carried out with these cis-type cavitands. Comparative studies with isomers trans-4, –5, and –6 allow us to evaluate the structure-activity relationship. The catalytic results strongly suggest two salient features. Firstly, the less impeded cis-environment around the metal center reduced or modified the product distribution as compared to those observed with trans-spanned ligand. Secondly, the distance between the two phosphorus atoms is shorter in the cis-types than trans-versions; although a shorter distance promotes cooperation between the two metal centers, as observed in the styrene hydroformylation, it might favor the leach of the rhodium metal away from the ligand and formation of rhodium aggregations. To the best of our knowledge, this work represents the first examples in homogeneous catalysis of comparative studies involving ligands built on extended cavitands having a cis- or a trans-positioning of two active centers. Further developments of cavitand catalysts are ongoing and will be reported in due course.

Experimental Section

General Methods: All reactions sensitive to air or moisture were carried out under an argon or a nitrogen atmosphere and anhydrous conditions unless otherwise noted. Dry solvents were purged and used without further purification and dehydration. All
reagents were purchased and used without further purification. Analytical thin layer chromatography was carried out on Merck silica 60F254. Column chromatography was carried out with silica gel 60A (Kanto Chemical Co.). LRMS and HRMS were reported on the basis of TOF (time of flight)-MS (MADI-TOF or LCMS-IT-TOF), and DART (Direct Analysis in Real Time)-MS. 1H and 13C NMR spectra were recorded with a 5 mm QNP probe at 400 MHz and 100 MHz, respectively. Chemical shifts are reported in δ (ppm) with reference to residual solvent signals ([1H NMR: CDCl3 (7.26), CH2Cl2 (2.08), CH3H (7.16), CH2Cl2 (5.32); 13C NMR: CDCl3 (77.0)]). Signal patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Assignment of 13C NMR was carefully performed with labeling the corresponding numbers those were listed in 13C NMR spectra.

Synthesis of 1 and iso-1: (see Scheme 1(a) and (b)) To the Schlenk tube charged with a solution of the tetra-hydroxy cis-cavitand (407 mg, 0.3 mmol) in dry toluene (3 mL) under N2 at 135 °C, EtN(P(Pr)2) (0.52 mL, 3.0 mmol) and P(OCH3)3 (0.29 mL, 2.4 mmol) were added. After stirred for 6 h, the reaction mixture was cooled to room temperature and concentrated to give 457 mg of crude material. Purification by short-plugged column chromatography (eluent: hexane/EtOAc, 19:1) afforded 195 mg of 1 ("out-out") as white solid materials in 44% yield and 98 mg of iso-1 ("in-out") as white solid materials in 22% yield.

Synthesis of 3: (see Scheme 1(c)) To the tetra-hydroxy cis-cavitand platform (272 mg, 0.2 mmol) in a 20 mL Schlenk tube under Ar were added toluene (2 mL) and Et3N (0.13 mL, 0.96 mmol). After the mixture was stirred for 10 min, P(NH2)3 was added and the reaction mixture was heated at 75 °C for 1 h. Then the filtrate was concentrated in vacuo to give 309 mg of crude products. Purification by short-plugged column chromatography (eluent, CHCl3 only) afforded 138 mg of white solid materials, which were recrystallized from EtOH/EtOAc (8 mL/4.5 mL) to yield 2 in 40% (120 mg) as colorless crystals. 1H NMR (400 MHz, CDCl3) 8.39 (s, 1H), 7.99 (dd, J = 8.5, 8.4 Hz, 2H), 7.80 (dd, J = 8.2, 1.4 Hz, 2H), 7.61–7.51 (m, 4H), 7.32 (s, 2H), 7.19 (s, 1H), 7.18 (s, 2H), 7.12 (s, 1H), 6.33 (s, 1H), 5.70 (t, J = 8.2 Hz, 2H), 4.55 (t, J = 7.6 Hz, 2H), 2.77 (d, J = 8.1 Hz, 2H), 1.43–2.17 (m, 8H), 1.14 (t, J = 8.1 Hz, 2H), 0.87 (t, J = 7.8 Hz, 2H), 0.65 (d, J = 8.6 Hz, 6H, POCH3), 2.46–2.35 (m, 8H), 1.50–1.29 (m, 72H), 0.97–0.92 (m, 12H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 153.3, 153.2, 152.9, 152.8, 149.3, 147.3, 147.2, 147.1, 147.0, 146.9, 146.8, 146.7, 138.0, 137.9, 137.8, 137.7, 136.5, 135.7, 134.5, 134.1, 132.9, 128.8, 125.1, 124.3, 123.8, 123.7, 119.2, 118.1, 117.4, 117.3, 117.1, 116.8, 51.9 (d, J = 8.2 Hz, 2H), 35.9, 34.4, 32.9, 32.3 (many peaks are overlapped), 31.8, 31.7, 31.6, 31.5, 31.4, 31.3, 31.2, 31.1, 31.0, 29.8, 28.4, 28.3, 21.3, 14.5 (many peaks are overlapped) ppm; 31P{1H} NMR (162 MHz, CDCl3) 125.6, 110.6 ppm; MS (ESI) m/z: 1512 [M + Cl]; IR (neat): ν = 2922, 2851, 1578, 1412, 1352, 1146, 1029, 760 cm–1; HRMS (ESI) calcld. for C28H111N9O13P2Cl: 1511.8021 [M + Cl]–, found 1511.8021.
hexane/EtOAc, 1:1) to afford 56 mg of fied by short-plugged silica-gel column chromatography (eluent: all the volatiles had been evaporated, the crude products were puri-

\[\text{J} \]

1H NMR (400 MHz, CDCl3) 8.33 (s, 1H), 7.92–7.90 (m, 4H), 7.64–7.58 (m, 4H), 7.46 (s, 2H), 7.31 (s, 1H), 7.29 (s, 2H), 7.24 (s, 1H), 6.82 (s, 1H), 5.77 (q, J = 8.0 Hz, 2H), 4.44 (t, J = 7.3 Hz, 2H), 4.02 (d, J = 13.8 Hz, 6H), 2.30–2.17 (m, 8H), 1.45–1.27 (m, 72H), 0.90–0.87 (m, 12H) ppm; 31P{1H} NMR (162 MHz, CDCl3) 153.2 (d, J= 17 Hz), 153.1 (two peaks are overlapped), 152.2, 152.0, 154.3, 144.6, 140.2, 140.1 (two peaks are overlapped), 137.9 (d, J= 19 Hz), 137.0, 136.0, 135.7, 130.2, 130.0, 129.6, 127.5, 123.4, 123.2, 119.0, 118.3, 55.1 (PO3CH3), 36.0, 34.4, 32.2 (many peaks are overlapped), 31.2, 30.0 (many peaks are overlapped), 29.9 (many peaks are overlapped), 29.9, 29.8, 29.7 (many peaks are overlapped), 28.2, 28.1, 23.0, 22.9, 14.4 ppm; 31P{1H} NMR (162 MHz, CDCl3) 99.4 ppm; MS (ESI) m/z: 1528 [M + Cl]⁻; IR (neat): ν = 2922, 2851, 1578, 1482, 1352, 1146, 1029, 760 cm⁻¹; HRMS (ESI) calcld. for C90H118Au2ClN4O11P2: 1759.7366 [M + Cl]⁻, found 1757.7967.

Synthesis of 1-(AuCl2) and 3-AuCl2: (see Scheme 2) For 1-AuCl2: Under N2 atmosphere, a solution of 1 (148 mg, 0.10 mmol) in toluene (2 mL) underwent addition of AuCl3(C6H5)2 (71 mg, 0.24 mmol), and the mixture was stirred for 40 min, consumption of 1 was monitoring by TLC. After all the volatiles had been evaporated, 174 mg of as white powder materials, corresponding to 1-AuCl2 complex was isolated in quantitative yield. 1H NMR (400 MHz, CDCl3) 8.33 (s, 1H), 7.92–7.90 (m, 4H), 7.64–7.58 (m, 4H), 7.46 (s, 2H), 7.31 (s, 1H), 7.29 (s, 2H), 7.24 (s, 1H), 6.82 (s, 1H), 5.77 (t, J = 8.0 Hz, 2H), 4.44 (t, J = 7.3 Hz, 2H), 4.02 (d, J = 13.8 Hz, 6H), 2.30–2.17 (m, 8H), 1.45–1.27 (m, 72H), 0.90–0.87 (m, 12H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 153.2 (d, J= 17 Hz), 153.1 (two peaks are overlapped), 152.2, 152.0, 154.3, 144.6, 140.2, 140.1 (two peaks are overlapped), 137.9 (d, J= 19 Hz), 137.0, 136.0, 135.7, 130.2, 130.0, 129.6, 127.5, 123.4, 123.2, 119.0, 118.3, 55.1 (PO3CH3), 36.0, 34.4, 32.2 (many peaks are overlapped), 31.2, 30.0 (many peaks are overlapped), 29.9 (many peaks are overlapped), 29.9, 29.8, 29.7 (many peaks are overlapped), 28.2, 28.1, 23.0, 22.9, 14.4 ppm; 31P{1H} NMR (162 MHz, CDCl3) 99.4 ppm; MS (ESI) m/z: 1906 [M + Cl]⁻; IR (neat): ν = 2925, 2857, 1578, 1482, 1352, 1146, 1029, 905, 599 cm⁻¹; HRMS (ESI) calcld. for C90H118Au2ClN4O11P2: 1905.7343 [M – Cl]⁻, found 1905.7394.

For 3-AuCl2: Under N2 atmosphere, a solution of 3 (111 mg, 0.074 mmol) in toluene (1.2 mL) underwent addition of AuCl3(C6H5)2 (26 mg, 0.089 mmol), and the reaction mixture was stirred for 30 min, consumption of 3 was monitoring by TLC. After all the volatiles had been evaporated, the crude products were puri-

Representative procedure for Au-catalyzed dimerization of terminal alkynes: (see Scheme 3) Under N2 atmosphere, the bis-Au catalyst (0.01 mmol) in a 25 mL two-necked flask was dissolved in toluene (5 mL; containing traces of water), and the starting alkynes of ethynylbenzene (102 mg, 1 mmol) and the other partner 1-octyne (165 mg, 1.5 mmol) were added. After addition of AgOTf (5.0 mg, 0.02 mmol) at room temperature, the reaction was con-

Supporting Information (see footnote on the first page of this article): 1H NMR and 13C NMR and 31P NMR spectra for all new compounds of cis-1, cis-2, cis-3, trans-1(AuCl2) and 3-AuCl2.

Acknowledgments JSPS Grant-in-Aid for Scientific Research (C), Grant Number 19K05426, which supported T. I. in this work, is gratefully aknowledged for generous funding. The authors thank Dr. Toshi-

Keywords: Introverted ligands · Cavitands · Structure-activity relationships · Homogeneous catalysis

[13] No resonances of the "in-in" isomer was observed in the 1H NMR spectrum of the crude reaction mixture.

[14] The oxidation with mCPBA led to 24 % of di-phosphate derivative and 46 % of reacted 1 was recovered.

[15] In compound 5, crystallographic analysis revealed that, for steric reason, the two PN(CH3)2 moieties point outside from the cavity, see ref.[23].

Received: July 20, 2019