Supporting Information

Introverted Phosphorous-Au Cavitands for Catalytic Use

Michael P. Schramm[b], Mao Kanaura[a], Kouhei Ito[a], Masataka Ide[a], and Tetsuo Iwasawa[a]*

[a] Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, 520-2194, Japan
[b] Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA

corresponding author email: iwasawa@rins.ryukoku.ac.jp

Contents

a) Standard Reaction Conditions for Hydration of Terminal Alkynes.
b) Standard Reaction Conditions for Conia-Ene Reaction of 8.
c) Consecutive NMR spectra for reactions of ethynylbenzene with AgOTf, H₂O, and 3 (Figure 1S).
d) Data of HRMS of 3 mixed with AgOTf (Figure 2S).
e) Representative ¹H NMR spectrum for the hydration of ethynylbenzene to benzophenone.
f) Representative ¹H NMR spectrum (400 MHz) for the hydration of 1-ethynylbenzene to 1-(naphthalen-1-yl)ethan-1-one.
g) Representative ¹H NMR spectrum (400 MHz) for the hydration of 9-ethynylanthracene to 1-(anthracen-9-yl)ethan-1-one.
h) The ¹H and ¹³C NMR spectra of all new compounds for 2-7.
a) Standard Reaction Conditions for Hydration of Terminal Alkynes.

5.0 mg of Au-Cl cavitand (0.0028 mmoles, 5 mol %, typically cavitand 3) and 0.7 mg of AgOTf (0.0028 mmoles, 5 mol %) were mixed in a small 1.0 mL vial with 0.55 mL of deuterated solvent (typically, [D$_8$]toluene) and heated to 85 °C (or 60 °C for CDCl$_3$) for 30 minutes. Terminal alkyne (0.056 mmoles) was added to the vial and the solution was transferred to an NMR tube and heated for an additional 1 hour, and then NMR was acquired at multiple intervals.

b) Standard Reaction Conditions for Conia-Ene Reaction of 8

5.0 mg of Au-Cl cavitand (0.0028 mmoles, 5 mol %, typically cavitand 3) and ~ 0.7 mg of AgOTf (0.0028 mmoles, 5 mol %) were mixed in a small 1.0 mL vial with 0.55 mL of deuterated solvent (typically, [D$_8$]toluene) and heated to 85 °C (or 60 °C for CDCl$_3$) for 30 minutes. Ketoester alkyne 8 (11.0 mg, 0.056 mmoles) was added to the vial and the solution was transferred to an NMR tube and heated for an additional 1 hour, and then NMR was acquired at multiple intervals.
c) Consecutive NMR spectra for reactions of ethynylbenzene with AgOTf, H₂O, and 3.

![NMR spectra diagram](image)

Figure 1S. ¹H NMR (400 MHz, [D₈]toluene) a) ethynylbenzene (0.019 mmol), b) 42 mol% AgOTf added, c) 6 eq of water added and heated to 85 °C for 1 hour, d) 3 (5 mol%) added and heated for 1 hour and e) heated for 12 more hours.
d) Data of HRMS of 3 mixed with AgOTf.
Figure 2S. HRMS (MALDI-TOF) of 3 mixed with AgOTf in CH$_2$Cl$_2$ after sitting for 15 minutes. Top for only species in region of interest is [3 - Cl]$^+$ (calculated: 1752.8758, observed: 1752.8667), and bottom for the spectrum in full region.
e) Representative 1H NMR spectrum (400 MHz) for the hydration of ethynylbenzene to benzophenone.

Reactions were carried out with 0.056 mmoles of substrate, 0.056 mmoles water, 5% 3, 5% AgOTf, 0.55 mL of [D$_8$]toluene, under 85 °C for 19 hours. The spectrum shown below is the representative portion of up- and down-field for ease of view.
f) Representative 1H NMR spectrum (400 MHz) for the hydration of 1-ethynylbenzene to 1-(naphthalen-1-yl)ethan-1-one.

Reactions were carried out with 0.056 mmoles of substrate, 0.056 mmoles water, 5% 3, 5% AgOTf, 0.55 mL $[D_8]$toluene, under 85 °C for 19 hours. The spectrum shown below is the representative portion of up- and down-field for ease of view.
g) Representative 1H NMR spectrum (400 MHz) for the hydration of 9-ethynylanthracene to 1-(anthracen-9-yl)ethan-1-one.

Reactions were carried out with 0.056 mmoles of substrate, 0.056 mmoles water, 5% 3, 5% AgOTf, 0.55 mL [D$_8$]toluene, under 85 °C and 1 hour. The spectrum shown below is the representative portion of up- and down-field for ease of view.
h) The 1H and 13C NMR spectra of all new compounds for 2-7.

Compound 2

1H NMR spectrum in CDCl$_3$
Compound 2

1H NMR spectrum in toluene-d_8
Compound 2

13C NMR spectrum in CDCl$_3$
Compound 3

1H NMR spectrum in CDCl$_3$
Compound 3

1H NMR spectrum in toluene-d_8
Compound 3

13C NMR spectrum in CD$_2$Cl$_2$
Compound 4a

1H NMR spectrum in CDCl$_3$
Compound 4a

1H NMR spectrum in toluene-d_8
Compound 4a

13C NMR spectrum in CDCl$_3$
Compound 4b

1H NMR spectrum in CDCl$_3$
Compound 4b

13C NMR spectrum in CDCl$_3$
Compound 5

1H NMR spectrum in CDCl$_3$
Compound 5

1H NMR spectrum in toluene-d_8
Compound 5

13C NMR spectrum in CDCl$_3$
Compound 6

1H NMR spectrum in CDCl$_3$
Compound 6

1H NMR spectrum in toluene-d_8
Compound 6

13C NMR spectrum in CDCl$_3$
Compound 7

1H NMR spectrum in CDCl$_3$
Compound 7

1H NMR spectrum in toluene-d_8
Compound 7

13C NMR spectrum in CDCl$_3$