Stereo-defined Synthesis of Tamoxifens those are based on (*E*)-1-bromo-2-iodoalkene Templates

Background: stereo-defined synthesis of differentially all-carbon tetrasubstituted alkenes derived from (*E*)-1-bromo-2-iodoalkenes

N. Endo, T. Iwasawa, *Tetrahedron* **2017**, *73*, 5833-5840.

Approach: we aim at Cu-based activation of PhSuBu₃ and diverse synthesis of Tamoxifen analogues.

Unexpectedly, the CuTC-mediated substitution reaction proceeded even in the absence of PPh₃.

a a buant	town /00	time/h	scale of the starting	Isolated Yield/%		
Solvent	temp./°C	time/n		1	alkyne	1,2-dihaloalkene
toluene	90	6	0.3	20	20	37
dioxane	90	2	0.3	<7	-	-
toluene	105	6	0.3	38	13	7
toluene	105	18	1	44	11	8
o-xylene	135	6	1	35	11	3

The protocol was amenable to scale-up.

$\int_{Br} + \int_{Bu_3Sn} + \int_{Bu_3Sn} + \int_{1.5 \text{ ex}} + \int_{$	CuTC sc tem	c (1.5 eq)	Br 1	alkyne	
Scale of 1,2-dihaloalkene	time/h	%Yield			
mmol (g)		1	alkyne	1,2-dihaloalkene	
1.5 (0.51)	18	53	16	5	
4.0 (1.3)	6	60	18	13	
8.0 (2.7)	22	62	17	6	
16 (5.4)	19	63	21	6	

The resultant vinyl bromide undertook the Pdcatalyzed Suzuki reaction to give an all-carbon tetrasubstituted alkene.

Synthesis of (E)-Tamoxifen

Unfortunately, lots of efforts were unsuccessful.

- Conventional copper sources didn't work at all; for example, Cu powder, Cu(OTf)₂, CuOTf•1/2C₆H₆, Cu(OAc)₂, CuOAc, CuI, CuBr, CuCl₂, CuCl, Cu₂O, CuO, CuSO₄•5H₂O, CuMeSal, CuBr•SMe₂, CuI •P(OEt)₃, Cu(MeCN)₄•BF₄.
- Cross-coupling protocols of Suzuki, Negishi, and Stille put the starting dihaloalkene back to the corresponding alkyne.
- Alternative ways using C-H activation, Bismuth and so on were ineffective.

Designed to replace the *para*-positioned MeO-moiety with (*i*Pr)₃SiO-, TsO-, and BzO- substructures.

para-Substituent-induced activation of the vinylic iodines was found, barely...

Scalable synthesis of phenyl-substituted benzoate-protected one.

BzO I + Bu ₃ Sn Br 4.5 equiv isomeric purity	CuTC 4.5 equiv toluene 105 °C, 2 h	Br single isomer	RO		
Scale of the starting	%Yield				
mmol (g)	Target	Alkyne	Starting		
0.5 (0.23)	41 (19)	11	15		
1.5 (0.69)	60 (40)	12	16		
4.0 (1.8)	60 (45)	13	13		
8.0 (3.7)	60 (47)	14	25		
16 (7.4)	61 (45)	15	9		

The following activation of the vinylic bromine was successful without erosion of the geometry.

NaSEt cleanly cleaved the ester bond without erosion of the stereo-chemistry, which relieved us!

A. K. Chakraborti, M. K. Nayak, L. Sharma, J. Org. Chem. **1999**, 64, 8027-8030.

The phenol undertook the final alkylaiton.

Here, the spectra of (*E*)- and (*Z*)-Tamoxifen those we are longing for...

Summary: finally, we've got both of them!

