European Journal of Organic Chemistry

Supporting Information

Construction of Multiple Five-Membered Rings in Dibenzo[*g*,*p*]chrysene Core for the Synthesis of a Nona-Cycle Buckybowl

Naruhiro Yoshida, Tomoya Imai, Toru Amaya, Yousuke Yamaoka, and Tetsuo Iwasawa*

Supporting Information

Construction of Multiple Five-Membered Rings in Dibenzo[*g*,*p*]chrysene Core for the Synthesis of a Nona-cycle Buckybowl

Naruhiro Yoshida ^[a], Tomoya Imai ^[b], Toru Amaya ^[b], Yousuke Yamaoka ^[c], Tetsuo Iwasawa *^[a]

^[a] Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, 520-2194, Japan

^[b] Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan

[c] School of Pharmacy, Hyogo Medical University, Minatojima, Chuo-ku, Kobe, 650-8530 (Japan)

Corresponding author's email address: iwasawa@rins.ryukoku.ac.jp

Contents

- 1. General Information.
- 2. Synthesis of 5, 6, 7/iso-7, and 1/iso-1 (Scheme 2).
- 3. Synthesis of 8/iso-8, and 2. (Scheme 3).
- 4. Synthesis of 9, 10, 11, and 3 (Scheme 4).
- 5. Synthesis of 4 (Scheme 5).
- 6. Data of DFT calculations for 4 and the unsubstituted nona-cycle (Figure 1S).
- Data of POAV angles for corannulene fragment and sumanene fragment in Figure 6 (Figure 2S).
- 8. ¹H NMR and ¹³C NMR spectra for all new compounds.
- 9. IR and MS spectra of nona-cycle compound 4.

1. General Information. All reactions sensitive to air or moisture were carried out under an argon or a nitrogen atmosphere and anhydrous conditions unless otherwise noted. Dry solvents were purchased and used without further purification and dehydration. All reagents were purchased and used without further purification. Analytical thin layer chromatography was carried out on Merck silica 60F₂₅₄. Column chromatography was carried out with silica gel 60 N (Kanto Chemical Co.). LRMS and HRMS were reported on the basis of TOF (time of flight)-MS (MALDI-TOF or LCMS-IT-TOF), and DART (Direct Analysis in Real Time)-MS. ¹H and ¹³C NMR spectra were recorded with a 5 mm QNP probe at 400 MHz and 100 MHz, respectively. Chemical shifts are reported in d (ppm) with reference to residual solvent signals [¹H NMR: CHCl₃ (7.26), DMSO (2.50); ¹³C NMR: CDCl₃ (77.0), [D6]-DMSO (39.5)]. Signal patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. All melting points were recorded on the melting point apparatus of "Stanford Research Systems OptiMelt" and are not corrected. X-ray single crystal diffraction analyses were performed on a Rigaku XtaLab P200 diffractometer Cu-Ka radiation. Data collection, cell refinement, data reduction and analysis were carried out with the CrysAlisPro (Rigaku Oxford Diffraction), in which the structures were solved by intrinsic phasing methods with the SHELXT program and refines using SHELXL¹ with anisotropic displacement parameters for non-H atoms. CCDC numbers contain the supplementary crystallographic data for this paper, and the data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/ data_request/cif.

¹ Sheldrick, G. M. A. Short History of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, 64, 112-122.

2. Synthesis of 5, 6, 7/iso-7, and 1/iso-1 (Scheme 2).

1. For 5, (3,6-diisopropyl-2,7-dimethoxy-9H-fluoren-9-one). Under an argon

atmosphere, to a suspension of the 2,7-dimethoxy-9*H*-fluoren-9one (10 g, 42 mmol) in 2-chloropropane (172 mL) was added AICl₃ (27 g, 200 mmol). After stirred at 40 °C (oil bath temp.) for

3 h, the reaction was quenched at 0 °C with slow addition (10 min) of ice water (400 mL). The aqueous phase was extracted with CH₂Cl₂ (50 mL x 3), and the combined organic phases were washed with brine (100 mL x 1), dried over Na₂SO₄, and concentrated *in vacuo* to give crude products. Purification by short-plugged silicagel column chromatography (Toluene only) afforded 12.8 g of products as orange solid materials. Purification by short-plugged column chromatography (Hexane/ Toluene, 1:4) afforded 6.4 g of **5** in 48% yield as orange solid materials. Data: *Rf* value 0.43 (Hexane/EtOAc, 4:1); M.p. 164-165 °C; ¹H NMR (400 MHz, CDCl₃) 7.24 (s, 2H, H-4), 7.11 (s, 2H, H-1), 3.86 (s, 6H, OCH₃), 3.35 (sept, *J* = 6.8 Hz, 2H, C*H*(CH₃)₂), 1.25 (d, *J* = 6.8 Hz, 12H, CH(C*H*₃)₂) ppm; ¹³C NMR (100 MHz, CDCl₃) 194.9 (C=O), 157.4 (C-2), 144.5 (C-3), 138.7 (C-9a), 134.0 (C-4a), 118.0 (C-4), 107.3 (C-1), 56.4 (OCH₃), 27.9 (*Q*H(CH₃)₂), 23.1 (CH(*Q*H₃)₂) ppm; MS (DART-TOF) *m/z*: 325 [MH]⁺; IR (neat) 2956, 1702, 1599, 1447, 1408, 1232, 1045, 877, 774, 591 cm⁻¹; HRMS (DART-TOF) calcd. for C₂₁H₂₅O₃: 325.1804 [MH]⁺, found; 325.1795; Anal. Calcd. for C₂₁H₂₄O₃; C, 77.75; H, 7.46. Found: C, 77.97; H, 7.55.

2. For 6, (4-bromo-3,6-diisopropyl-2,7-dimethoxy-9H-fluoren-9-one). Under an argon

atmosphere, to a solution of **5** (19 g, 59 mmol) in dry CH₂Cl₂ (100 mL) at 0 °C was added a solution of 4.2 M Br₂ in CH₂Cl₂ (84 mL, 350 mmol) dropwise over 5 min, and then the mixture

was stirred at room temperature for 4 h. The reaction was quenched with saturated

aq. Na₂S₂O₃ (180 mL), and the aqueous layer was extracted with CH₂Cl₂ (50 mL x 3). The combined organic phases were washed with brine (100 mL x 3), dried over Na₂SO₄, and concentrated *in vacuo* to give 26 g of crude products. Purification by silica-gel column chromatography (Hexane/CH₂Cl₂, 1:2) afforded 18 g of 6 in 74% yield as orange solid materials. Data: Rf value 0.57 (Hexane/CH₂Cl₂, 1:2); M.p. 253-255 °C; ¹H NMR (400 MHz, CDCl₃) 8.22 (s, 1H, H-5), 7.14 (s, 1H, H-8), 7.12 (s, 1H, H-1), 3.87 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.78 (sept, J = 7.0 Hz, 1H, $CH(CH_3)_2$, 3.35 (sept, J = 7.0 Hz, 1H, $CH(CH_3)_2$), 1.33 (d, J = 7.0 Hz, 6H, $CH(CH_3)_2$, 1.25 (d, J = 7.0 Hz, 6H, $CH(CH_3)_2$) ppm; ¹³C NMR (100 MHz, CDCl₃) 193.4 (C=O), 159.6 (C-2), 157.4 (C-7), 144.2 (C-3), 142.1 (C-6), 138.8 (C-8a), 137.4 (C-9a), 135.6 (C-4b), 134.2 (C-4a), 122.0 (C-5), 120.6 (C-4), 107.5 (C-1), 107.1 (C-8), 56.4 (OCH₃), 56.3 (OCH₃), 33.8 (<u>C</u>H(CH₃)₂), 28.1 (<u>C</u>H(CH₃)₂), 23.0 (CH(<u>C</u>H₃)₂), 20.3 (CH(<u>C</u>H₃)₂) ppm; MS (DART-TOF) *m/z*: 403 [MH]+; IR (neat) 2960, 1714, 1599, 1412, 1244, 1045, 778 cm⁻¹; HRMS (DART-TOF) calcd. for C₂₁H₂₄BrO₃: 403.0903 [MH]⁺, found; 403.0891; Anal. Calcd. for C₂₁H₂₃BrO₃; C, 62.54; H, 5.75. Found: C, 62.54; H, 5.56.

3. For 7/iso-7, (4,5'-dibromo-3,3',6,6'-tetraisopropyl-2,2',7,7'-tetramethoxy-10'H-

spiro[fluorene-9,9'-phenanthren]-10'-one/4,4'-dibromo-3,3',6,6'tetraisopropyl-2,2',7,7'-tetramethoxy-10'*H*-spiro[fluorene-9,9'phenanthren]-10'-one): The starting fluorenone **6** (38 g, 94 mmol) were added to $P(O-iPr)_3$ (65 mL, 280 mmol), and the resultant orange suspension was stirred at 146 °C (actual temperature, setting of the heat bath at 170 °C). After stirred for 43 h, the mixture was cooled to 56 °C (actual temperature, setting of the heat bath at 60 °C). To the mixture was slowly added water (65 mL) over 18 min, and the reaction system was re-heated to 82 °C (actual temperature, setting of the heat bath at 100 °C) for hydrolyzing the residual $P(Oi-Pr)_3$. After the reaction was conducted for 2 h, the reaction mixture was cooled to room temperature, and the collected precipitates were washed with MeOH (chilled at 0 °C, 10 mL x 3). The resultant residue was dried up with rotary evaporator (60 °C, 0.5 h), giving 35 g of **7***/iso*-**7** in 94% yield as whitish yellow solid materials (51:49 molar ratio). The sample was provided to the next step without further purification. Data: *Rf* value 0.57, 0.52 (Hexane/CH₂Cl₂, 1:1); ¹H NMR (400 MHz, CDCl₃) 8.53 (s, 1H), 8.51 (s, 1H), 8.45 (s, 1H), 8.28 (s, 1H), 7.25 (s, 1H), 7.20 (s, 1H), 6.62 (s, 1H), 6.60 (s, 1H), 6.36 (s, 1H), 6.33 (s, 1H), 6.25 (s, 1H), 6.08 (s, 1H), 4.04 (sept, *J* = 7.0 Hz, 1H), 3.90 (sept, *J* = 7.0 Hz, 2H), 3.63 (s, 3H), 3.46 (s, 3H), 3.31 (sept, *J* = 7.0 Hz, 3H), 1.41 (d, *J* = 7.0 Hz, 6H), 1.33 (d, *J* = 7.0 Hz, 24H), 1.32 (d, *J* = 7.0 Hz, 24H), 1.28-1.25 (m, 18H) ppm.

4. For 1/iso-1, (1,9-dibromo-2,7,10,15-tetraisopropyl-3,6,11,14-

tetramethoxydibenzo[*g*,*p*]chrysene/1,8-dibromo-2,7,10,15tetraisopropyl-3,6,11,14-tetramethoxydibenzo[*g*,*p*]chrysene): To a solution of **7**/*iso*-**7** (35 g, 44 mmol) in toluene (180 mL) was added methanol (36 mL), and the flask was heated at 45 °C. To the solution was added NaBH₄ (670 mg, 18 mmol) over 30 min (95.7 mg x 7 times at five-minutes intervals). After stirred for 0.5 h, the reaction was quenched with acetone (14 mL) and conducted for additional 0.5 h. The organic layer was washed with H₂O (100 mL x 3) and transferred into a 500 mL flask, and the flask was heated

at 120 °C (oil bath temp.) for azeotropic removal of water, which was followed by additional of CH₃SO₃H (0.03 mL, 0.44 mmol). After stirred for 0.5 h, the reaction mixture was allowed to cool to room temperature, and transferred into a 500 mL

separatory funnel. The organic layer was washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give crude products. Purification by silica-gel column chromatography (Hexane/ CH₂Cl₂, 9:1) afforded 31 g of 1/iso-1 in 89% yield as yellowish orange solid materials (51:49 molar ratio). Data: Rf value 0.38 (Hexane/EtOAc, 9:1); M.p. 283 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 8.98 (s, 2H), 8.97 (s, 2H), 8.13 (s, 2H), 8.01 (s, 2H), 8.00 (s, 2H), 7.90 (s, 2H), 4.11 (sept, J = 7.0 Hz, 4H), 3.96 (s, 12H), 3.94 (s, 24H), 3.92 (s, 12H), 3.49 (sept, J = 7.0 Hz, 4H), 1.41 (d, J = 7.0 Hz, 48H) ppm. ¹³C NMR (100 MHz, CDCl₃) 157.7, 157.5, 156.1, 155.9, 137.6, 137.3, 134.7, 134.4, 130.7 (two peaks are overlapped), 129.51, 129.45, 129.3, 129.1, 127.8 (two peaks are overlapped), 127.5 (two peaks are overlapped), 125.8, 125.6, 124.57, 124.55, 124.0, 123.5, 108.8, 108.6, 107.1, 107.0, 56.04, 56.00, 55.84, 55.80, 35.4 (two peaks are overlapped), 27.3 (two peaks are overlapped), 23.3 (two peaks are overlapped), 20.5 (two peaks are overlapped) ppm; MS (DART-TOF) *m/z*: 775 [MH]+; IR (neat) 2959, 2920, 2865,1587, 1452, 1401, 1247, 1053, 831 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₂H₄₇Br₂O₄: 775.1821 [MH]⁺, found; 775.1817.

- 3. Synthesis of 8/iso-8, and 2. (Scheme 3).
 - 1. For 8/iso-8, (2,7,10,15-tetraisopropyl-3,6,11,14-

tetramethoxydibenzo[g,p]chrysene-1,9-dicarboxylic acid/2,7,10,15tetraisopropyl-3,6,11,14-tetramethoxydibenzo[g,p]chrysene-1,8dicarboxylic acid). Under an argon atmosphere, to a solution of **1**/ *iso*-**1** (3.6 g, 4.7 mmol) in dry Et₂O (216 mL) at -78 °C was added n-BuLi (10.5 mL, 17 mmol, 1.59 M in hexane) dropwise over 5 min. After the mixture was stirred at -78 °C for 15 min, gaseous carbon dioxide (balloon) was bubbled inside the mixture. While the bubbling kept continuing, the reaction mixture was allowed to warm to ambient temperature. After conducted for 20 h, the reaction was quenched with 3 M aq. HCl (30 mL) at 0 °C. The aqueous phase was extracted with EtOAc (30 mL x 3), and combined organic layers were washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give crude products. Purification by silica-gel column chromatography (Hexane/EtOAc, 2:1) gave 2.5 g of **8***/iso*-**8** (76%, ~ 50:50) as whitish yellow solid materials. Data: *Rf* value 0.19 (Hexane/EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃) 8.45 (s, 2H), 8.28 (s, 2H), 8.17 (s, 2H), 8.10 (s, 2H), 8.0 (s, 2H), 3.97 (s, 12H), 3.93 (s, 12H), 3.46 (sept, *J* = 7.0 Hz, 4H + 4H), 1.50 (d, *J* = 7.0 Hz, 24H), 1.33 (d, *J* = 7.0 Hz, 24H) ppm; MS (DART-TOF) *m/z*: 703 [M-H]⁻; HRMS (DART-TOF) calcd. for C₄₄H₄₁O₈: 703.3271 [M-H]⁻, found; 703.3252.

2. For 2, (3,5,10,12-tetraisopropyl-2,6,9,13-tetramethoxydiindeno[7,1,2-ghi:7',1',2'-

pqr]chrysene-4,11-di-one). Under an argon atmosphere, to a suspension of **8**/*iso*-**8** (15 g, 21 mmol) in sulfurous dichloride (140 mL, 1.9 mol) at room temperature was added catalytic amounts of DMF (8 drops over 1 min). After stirred at room temperature for 0.5 h, the mixture was concentrated *in vacuo* to give 15 g of yellow solid products. To a suspension of the

sample in dry CH₂Cl₂ (170 mL) at 0 °C was added AlCl₃ (9.6 g, 72 mmol). After stirred at 0 °C for 0.5 h, the mixture was quenched with 3 M aq. HCl (140 mL) at 0 °C. The aqueous phase was extracted with CH₂Cl₂ (50 mL x 3), and combined organic phases were washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give crude samples. Purification by silica-gel column chromatography (Hexane/Toluene, 1:1) yielded 10 g of **2** in 74% as orange solid materials. Data: *Rf* value 0.55 (Hexane/CH₂Cl₂, 2:1); M.p. 281-328 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 8.26 (s, 4H, H-1), 4.48 (sept, *J* = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 4.08 (s, 12H, OCH₃) 1.49 (d, *J* = 6.9 Hz, 24H, CH(C<u>H₃)₂) ppm; ¹³C NMR (100</u> MHz, CDCl₃) 195.3 (C=O), 160.0 (C-2), 140.9 (C-3), 132.8 (C-3a), 130.6 (C-14c), 125.9 (C-14b), 124.4 (C-3a¹), 110.7 (C-1), 56.1 (OCH₃), 25.6 (*C*H(CH₃)₂), 20.6 (CH(*C*H₃)₂) ppm; MS (DART-TOF) *m/z*: 669 [MH]+; IR (neat) 2955, 2920, 2865, 1698 (C=O), 1575, 1452, 1254, 1190, 978, 658 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₅O₆: 669.3216 [MH]+, found; 669.3210; Anal. Calcd. for C₄₄H₄₄O₆: C, 79.02; H, 6.63. Found: C, 79.24; H, 6.63.

4. Synthesis of 9, 10, 11, and 3 (Scheme 4).

1. For 9, (3,5,10,12-tetraisopropyl-2,6,9,13-tetramethoxydiindeno[7,1,2-ghi:7',1',2'-

pqr]chrysene-4,11-di-one). Under an argon atmosphere, to a 500 mL flask was added starting diketone **2** (9.0 g, 13 mmol) and THF (140 mL) and AlCl₃ (9.4 g, 70 mmol) and NaBH₄ (4.7 g, 130 mmol). After stirred at 80 °C for 4 h, the mixture was quenched with 3 M aq. HCl (70 mL) dropwise over 8 min. The aqueous layer was extracted with toluene (70 mL x 3), and

combined organic phases were washed with brine (100 mL), and dried over Na₂SO₄, and filtered, and concentrated *in vacuo* to give 8.8 g of crude products. Purification by silica-gel column chromatography (Hexane/Toluene, 2:1) afforded 6.2 g of **9** in 71% yield as yellow solid materials. Data: *Rf* value 0.52 (Hexane/ Toluene, 1:1); M.p. 284 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 8.57 (s, 4H, H-1), 4.52 (s, 4H, CH₂), 4.17 (s, 12H, OCH₃), 3.79 (sept, *J* = 7.2 Hz, 4H, C<u>*H*</u>(CH₃)₂), 1.59 (d, *J* = 7.2 Hz, 24H, CH(C<u>*H*₃)₂) ppm; ¹³C NMR (100 MHz, CDCl₃) 157.8 (C-2), 139.3 (C-3a), 132.8 (C-3), 132.7 (C-14c), 127.2 (C-14b), 125.2 (C-3a¹), 105.5 (C-1), 56.2 (OCH₃), 37.0 (CH₂), 28.6 (<u>*C*</u>H(CH₃)₂), 21.7 (CH(<u>*C*</u>H₃)₂) ppm; MS (DART-TOF) *m/z*: 641 [MH]⁺; IR (neat): 2944, 2928, 2861, 1595, 1452, 1405, 1191, 1175, 1089, 1057, 820, 661 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₉O₄ [MH]⁺: 641.3625, found: 641.3615.</u> 2. For 10, (3,5,10,12-tetraisopropyl-2,6,9,13-tetramethoxydiindeno[7,1,2-ghi:7',1',2'-

pqr]chrysene-4,11-di-one). Under an argon atmosphere, to the solution of **9** (6.1 g, 9.6 mmol) in dry CH_2Cl_2 (80 mL) at 0 °C was added BBr₃ (57 mL, 1 M CH_2Cl_2 solution) dropwise over 8 min. After stirred for 15 min, reaction mixture was allowed to warm to room temperature and conducted 4 h. The reaction was

quenched with 3 M aq. HCl (60 mL) at 0 °C. The aqueous layer was extracted with EtOAc (50 mL x 3) and the combined organic layers were washed with brine (100 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give 6.4 g of crude products. Purification by silica-gel column chromatography (Toluene/EtOAc, 9:1) afforded 4.7 g of **10** in 85% yield as greenish yellow solid materials. Data: *Rf* value 0.17 (Hexane/EtOAc, 4:1); M.p. 178 °C (dec.); ¹H NMR (400 MHz, DMSO-*d*₆) 9.42 (s, 4H, OH), 8.39 (s, 4H, H-1), 4.43 (s, 4H, CH₂), 3.67 (sept, *J* = 7.0 Hz, 4H, C*H*(CH₃)₂), 1.51 (d, *J* = 7.0 Hz, 24H, CH(C*H*₃)₂) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) 154.8 (C-2), 138.5 (C-3a), 131.3 (C-3), 131.2 (C-14c), 125.6 (C-14b), 124.3 (C-3a¹), 109.2 (C-1), 36.4 (CH₂), 28.0 (*C*H(CH₃)₂), 21.4 (CH(*C*H₃)₂) ppm; MS (DART-TOF) *m/z*: 585 [MH]+; IR (neat): 3403 (OH), 2949, 2909, 1582, 1475, 1395, 1372, 1240, 1221, 1176, 997, 838 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₀H₄₁O₄: 585.3005 [MH]+, found: 585.2993.

3. For 11, (3,5,10,12-tetraisopropyl-2,6,9,13-tetramethoxydiindeno[7,1,2-ghi:7',1',2'-

pqr]chrysene-4,11-di-one). Under an argon atmosphere, to a suspension of **10** (4.7 g, 8.1 mmol) in dry CH_2Cl_2 (56 mL) at -20 °C was added a solution of Br_2 (39 mL, 1 M CH_2Cl_2 solution) dropwise over 9 min, and then the mixture was stirred at -20 °C for 4 h. The reaction was quenched with saturated aq. $Na_2S_2O_3$

(40 mL) and 3 M aq. HCl (60 mL), and the aqueous layer was extracted with EtOAc

(50 mL x 3). The combined organic phases were washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give 8.3 g of crude products. Purification by silica-gel short plugged column chromatography (Hexane/CHCl₃, 1:1) yielded 5.4 g of **11** in 73% as yellow solid materials. Data: *Rf* value 0.57 (Hexane/EtOAc, 4:1); M.p. 140 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 6.26 (s, 4H, OH), 4.49 (s, 4H, CH₂), 3.77 (qq J = 7.2, 7.2 Hz, 4H, CH(CH₃)₂), 1.59 (d, J = 7.2 Hz, 12H, CH(C H_3)₂), 1.57 (d, J = 7.2 Hz, 12H, CH(C H_3)₂) ppm; ¹³C NMR (100 MHz, CDCl₃) 149.9 (C-2), 137.9 (C-3), 132.3 (C-3a), 132.2 (C-14c), 129.7 (C-14b), 122.9 (C-3a¹), 108.4 (C-1), 37.2 (CH₂), 29.8 (CH(CH₃)₂), 21.5 (CH(CH_3)₂), 21.4 (CH(CH_3)₂) ppm; MS (DART-TOF) *m/z*: 899 [M-H]⁻; IR (neat): 3457 (OH), 3430 (OH), 2967, 2928, 2870, 1578, 1460, 1351, 1164, 1097, 1027, 750 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₀H₃₅Br₄O₄ [M-H]⁻: 898.9228, found: 898.9239.

4. For 3, (3,5,10,12-tetraisopropyl-2,6,9,13-tetramethoxydiindeno[7,1,2-ghi:7',1',2'-

pqr]chrysene-4,11-di-one). Under an argon atmosphere, to a suspension of **11** (4.5 g, 5.0 mmol) in dry CH₂Cl₂ (130 mL) was added 1,8-bis(dimethylamino)naphthalene (Proton Sponge, 19 g, 90 mmol) and trimethyloxonium tetrafluoroborate (Meerwein reagent, 13 g, 90 mmol). After stirred at room temperature for

0.5 h, the reaction was quenched with 3 M aq. HCl (45 mL) at 0 °C. The aqueous layer was extracted with CH₂Cl₂ (30 mL x 3), and combined organic phases were washed with brine (80 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give crude products. Purification by silica-gel short plugged column chromatography (Toluene only) afforded 4.5 g of yellow solid materials. Purification by silica-gel column chromatography (Hexane/Toluene, 1:2) yielded 4.0 g of **3** in 83% as yellow solid materials. Data: *Rf* value 0.21 (Toluene only); M.p. 299 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 4.54 (s, 4H, CH₂), 4.14 (s, 12H, OCH₃), 3.83 (qq,

10/41

J = 7.1, 7.1 Hz, 4H, C<u>H</u>(CH₃)₂), 1.61 (d, J = 7.1 Hz, 12H, CH(C<u>H₃</u>)₂), 1.57 (d, J = 7.1 Hz, 12H, CH(C<u>H₃</u>)₂) ppm; ¹³C NMR (100 MHz, CDCl₃) 155.7 (C-2), 139.1 (C-3a), 138.6 (C-3), 135.0 (C-14c), 131.4 (C-14b), 125.7 (C-3a¹), 117.0 (C-1), 62.9 (OCH₃), 38.0 (CH₂), 29.3 (<u>C</u>H(CH₃)₂), 23.1 (CH(<u>C</u>H₃)₂), 22.9 (CH(<u>C</u>H₃)₂) ppm; MS (DART-TOF) *m/z*: 955 [M-H]⁻; IR (neat): 2960, 2936, 1369, 1329, 1266, 1057, 1031, 901, 647 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₃Br₄O₄: 954.9854 [M-H]⁻, found: 954.9868.; Anal. Calcd. for C₄₄H₄₄Br₄O₄; C, 55.25; H, 4.64. Found: C, 55.35; H, 4.62.

5. Synthesis of 4 (6,7-dibromo-2,4,9,11-tetraisopropyl-1,5,8,12-tetramethoxy-3,10-

dihydroindeno[7,1,2-*pqr*]-*as*-indaceno[3,2,1,8,7-*defghi*]chrysene, Scheme 5). Under an argon atmosphere, to a solution of **3** (1.00 g, 1.05 mmol) in mesitylene (20.0 mL) was added bis(tri-*tert*butylphosphine)palladium(0) (534 mg, 1.05 mmol). The reaction mixture was allowed to warm to 195 °C (bath temp.), then stirred for 15 h. The mixture was allowed to cool to ambient

temperature, and filtered through a pad of celite. The organic phase was washed with brine (50 mL), and dried over Na₂SO₄, and concentrated *in vacuo* to give crude products as brown solid materials. Purification by short-plugged silica-gel column chromatography (Hexane/Toluene, 1:2) afforded 191 mg of yellow solid materials (24%). Data: *Rf* value 0.53 (Hexane/Toluene, 1:19); M.p. 235 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 4.83 (d, J = 20 Hz, 2H, CH₂), 4.54 (d, J = 20 Hz, 2H, CH₂), 4.32 (s, 6H, OCH₃), 4.21 (s, 6H, OCH₃), 3.84 (qq, J = 7.0, 7.0 Hz, 2H, C<u>H</u>(CH₃)₂), 3.76 (qq, J = 7.0, 7.0 Hz, 2H, C<u>H</u>(CH₃)₂), 1.62 (d, J = 7.0 Hz, 6H, CH(C<u>H₃)₂), 1.60 (d, J = 7.0 Hz, 6H, CH(C<u>H₃)₂), 1.50 (d, J = 7.0 Hz, 6H, CH(C<u>H₃)₂), 1.47 (d, J = 7.0 Hz, 6H, CH(C<u>H₃)₂) ppm; ¹³C NMR (100 MHz, CDCl₃) 158.1 (C-5), 156.2 (C-1), 142.9 (C-3a), 142.3 (C-2a), 139.6 (C-4), 139.0 (C-2), 138.2 (C-6a), 137.3 (C-6b¹), 134.4 (C-12b¹), 130.9 (C-2a¹),</u></u></u></u>

11 / 41

129.6 (C-3a¹), 125.3 (C-12b), 122.5 (C-6b), 118.2 (C-6), 64.7 (OCH₃), 63.4 (OCH₃), 41.7 (CH₂), 29.2 (<u>C</u>H(CH₃)₂), 28.7 (<u>C</u>H(CH₃)₂), 23.6 (CH(<u>C</u>H₃)₂), 23.3 (CH(<u>C</u>H₃)₂), 22.90 (CH(<u>C</u>H₃)₂), 22.86 (CH(<u>C</u>H₃)₂) ppm; MS (DART-TOF) *m/z*: 795 [MH]+; IR (neat): 2963, 2929, 2869, 2836, 1573, 1541, 1443, 1362, 1304, 1231, 1018, 640, 583 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₅Br(79)₂O₄ [MH]+: 795.1685, found: 795.1704. 6. Data of DFT calculations for 4 and the unsubstituted nona-cycle (Figure 1S):

DFT Calculation: All calculations were conducted using a Gaussian 16 suite program (G16RevC.02).² Structure optimization was performed at the B3LYP-D3/6-31G(d,p) level of theory. By using the DFT-D3 dispersion correction method developed by Grimme et al.³ for the optimization, the bowl structure of compound 4, as observed in the X-ray crystal structure, was accurately reproduced. In contrast, structure optimization of compound 4 using B3LYP/6-31G(d,p) or CAM-B3LYP/6-31G(d,p) resulted in a flattened structure in both cases, and the bowl structure could not be reproduced. Harmonic vibrational frequency analysis was conducted on the optimized structures at the same level of theory (B3LYP-D3/6-31G(d,p)) to verify that all stationary points were local minima (with no imaginary frequencies).

² M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

³ a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456.

Figure 1S. Optimized structures for 4 and the unsubstituted nona-cycle (B3LYP-D3/6-31G(d,p)).

Cartesian Coordinates of Optimized Structures:

Cartesian coordinates for 4, optimized at the B3LYP-D3/6-31G(d,p) level of theory.

		С	oordinates (Angstrom	s)
Center Number	Atomic Type	х	Y	Z
1	35	1.442167	-3.4545	-1.76631
2	35	0.158675	-3.19434	1.332163
3	8	4.256747	-3.28852	-0.6619
4	8	0.552809	5.455144	0.142812
5	8	-2.60889	-4.33729	1.080391
6	8	-2.82695	4.799217	-0.26546
7	6	2.394103	0.29769	-0.37653
8	6	1.97151	1.641658	-0.39422
9	6	0.708703	1.939047	-0.77117
10	6	1.531105	-0.79261	-0.66097
11	6	2.893319	2.571235	0.057244

12	6	3.752553	0.27326	-0.03622
13	6	2.402494	3.884116	0.200374
14	6	-0.18671	0.870718	-0.97419
15	6	0.99527	4.165991	-0.09395
16	6	-1.43785	1.511776	-1.02108
17	6	3.620634	-2.07542	-0.5075
18	6	-2.54704	0.738985	-0.92171
19	6	-1.13398	-1.28963	-0.46113
20	6	0.078402	-0.48592	-0.76149
21	6	5.844161	-1.18308	0.371042
22	1	6.08754	-2.22157	0.133612
23	6	4.399172	-0.96302	-0.04908
24	6	0.097452	3.198746	-0.58854
25	6	4.184832	1.740944	0.289436
26	1	4.568505	1.827215	1.311345
27	1	4.991112	2.069692	-0.37415
28	6	2.258197	-1.98569	-0.84859
29	6	-2.39972	-0.65052	-0.65599
30	6	3.284223	5.022406	0.697753
31	1	2.689285	5.937866	0.658816
32	6	-1.38878	2.907574	-0.77421
33	6	-1.27825	-2.50706	0.253144
34	6	-3.65742	-1.13018	-0.25764
35	6	-2.66022	3.463792	-0.55052
36	6	-3.8037	1.263488	-0.61952
37	6	6.007594	-0.99719	1.891746
38	1	5.785343	0.031972	2.193095
39	1	7.035613	-1.21973	2.197827
40	1	5.334704	-1.65826	2.446752
41	6	-3.76732	-2.4223	0.238722

42	6	3.718201	4.806115	2.159902
43	1	4.351058	3.91831	2.26082
44	1	2.853572	4.672958	2.817497
45	1	4.29305	5.665587	2.52174
46	6	-2.53649	-3.10335	0.472888
47	6	6.834409	-0.29788	-0.40579
48	1	6.691249	-0.3981	-1.48572
49	1	7.863455	-0.58922	-0.1698
50	1	6.728429	0.759196	-0.14483
51	6	-3.88063	2.658759	-0.48461
52	6	-5.23501	-3.14669	2.176663
53	1	-4.5054	-3.8684	2.550511
54	1	-6.23855	-3.49207	2.448959
55	1	-5.05678	-2.1895	2.677346
56	6	-5.30093	3.574026	1.381425
57	1	-5.35049	2.602197	1.885791
58	1	-6.20998	4.13226	1.631898
59	1	-4.44115	4.121396	1.776602
60	6	3.982074	-4.23032	0.383519
61	1	2.904776	-4.35865	0.533405
62	1	4.444633	-3.9086	1.325971
63	1	4.421248	-5.17797	0.066466
64	6	4.507285	5.230216	-0.21356
65	1	5.083606	6.102582	0.113323
66	1	4.202297	5.391491	-1.25175
67	1	5.178004	4.365225	-0.19015
68	6	-0.11611	5.626066	1.400133
69	1	-1.04139	5.042328	1.433329
70	1	-0.35732	6.68841	1.476797
71	1	0.537788	5.339517	2.233214
L	1			

72	6	-2.0851	-5.42686	0.306592
73	1	-2.67996	-5.57374	-0.60293
74	1	-2.16317	-6.31104	0.941853
75	1	-1.03715	-5.26509	0.037574
76	6	-2.32759	5.712713	-1.25481
77	1	-2.79832	5.51881	-2.22624
78	1	-1.24063	5.65245	-1.3428
79	1	-2.60567	6.710041	-0.90808
80	6	-4.683	0.031377	-0.31388
81	1	-5.45199	-0.13244	-1.07886
82	1	-5.2088	0.126515	0.642075
83	6	-5.11441	-3.00094	0.647619
84	1	-5.8645	-2.26612	0.329256
85	6	-5.17265	3.391209	-0.14387
86	1	-5.09271	4.392584	-0.57876
87	6	-5.45616	-4.31947	-0.06939
88	1	-5.32152	-4.22964	-1.15207
89	1	-6.50036	-4.58999	0.121379
90	1	-4.827	-5.13465	0.291464
91	6	-6.4293	2.732925	-0.73217
92	1	-6.30975	2.525011	-1.80019
93	1	-7.2901	3.398462	-0.60962
94	1	-6.67578	1.793268	-0.22976

Cartesian coordinates for the unsubstituted nona-cycle, optimized at the B3LYP-

D3/6-31G(d,p) level of theory.

		Cc	oordinates (Angstrom	s)
Center Number	Atomic Type	Х	Y	Z
1	6	0.000059	-1.00889	-0.61637
2	6	-0.000021	0.383404	-0.78004
3	6	-1.104349	1.256006	-0.63009
4	6	-2.317125	0.707656	-0.36707
5	6	-2.436812	-0.69804	-0.26797
6	6	-1.346705	-1.60458	-0.39754
7	6	1.34688	-1.60445	-0.39774
8	6	2.436854	-0.69782	-0.26782
9	6	2.317042	0.707863	-0.36679
10	6	1.104196	1.256071	-0.62978
11	6	1.714785	-2.94777	-0.14054
12	6	3.014054	-3.27093	0.257419
13	6	4.029008	-2.30735	0.473432
14	6	3.726028	-0.98061	0.21752
15	6	3.394536	1.421508	0.153364
16	6	3.140473	2.775355	0.400111
17	6	1.833458	3.347054	0.199652
18	6	0.759119	2.589712	-0.29023
19	6	-3.725922	-0.98089	0.217525
20	6	-4.028776	-2.3076	0.473755
21	6	-3.01363	-3.27107	0.258212
22	6	-1.714362	-2.94781	-0.13967
23	6	-0.759401	2.589627	-0.29034
24	6	-1.833837	3.346902	0.199459
25	6	-3.140768	2.775067	0.399925

266-3.3947021.4212310.1530032764.4703630.3596590.466582286-4.4704720.3593450.466182910.99347-3.75002-0.232723013.245928-4.314860.4493923114.997521-2.619760.8538333213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.854269351-3.245383-4.314990.45041361-0.992889-3.74995-0.231483711.16897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777		i	ĺ	i de la companya de la	
2764.4703630.3596590.466582286-4.4704720.3593450.466182910.99347-3.75002-0.232723013.245928-4.314860.4493923114.997521-2.619760.8538333213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.854269351-3.245383-4.314990.450413610.992889-3.74995-0.231483711.6897244.3766390.5155673813.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.180074214.8296270.4222131.499777	26	6	-3.394702	1.421231	0.153003
286-4.4704720.3593450.466182910.99347-3.75002-0.232723013.245928-4.314860.4493923114.997521-2.619760.8538333213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.8542693513.245383-4.314990.45041361-0.992889-3.74995-0.231483711.6897244.3766390.5155673813.3904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.500274111-5.3519430.460677-0.180074214.8296270.4222131.499777	27	6	4.470363	0.359659	0.466582
2910.99347-3.75002-0.232723013.245928-4.314860.4493923114.997521-2.619760.8538333213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.8542693513.245383-4.314990.45041361-0.992889-3.74995-0.231483711.6897244.3766390.5155673813.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.180074214.8296270.4222131.499777	28	6	-4.470472	0.359345	0.46618
3013.245928-4.314860.4493923114.997521-2.619760.8538333213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.8542693513.245383-4.314990.45041361-0.992889-3.74995-0.231483711.6897244.3766390.5155673813.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007	29	1	0.99347	-3.75002	-0.23272
3114.997521-2.619760.8538333213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.8542693513.245383-4.314990.45041361-0.992889-3.74995-0.231483711.6897244.3766390.5155673813.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.180074214.8296270.4222131.499777	30	1	3.245928	-4.31486	0.449392
3213.9035743.4189770.8299573311.6892234.3767710.515765341-4.997245-2.620010.854269351-3.245383-4.314990.45041361-0.992889-3.74995-0.231483711.16897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	31	1	4.997521	-2.61976	0.853833
3311.6892234.3767710.515765341-4.997245-2.620010.854269351-3.245383-4.314990.45041361-0.992889-3.74995-0.231483711.1.6897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	32	1	3.903574	3.418977	0.829957
341-4.997245-2.620010.854269351-3.245383-4.314990.45041361-0.992889-3.74995-0.23148371-1.6897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	33	1	1.689223	4.376771	0.515765
351-3.245383-4.314990.45041361-0.992889-3.74995-0.23148371-1.6897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	34	1	-4.997245	-2.62001	0.854269
361-0.992889-3.74995-0.23148371-1.6897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	35	1	-3.245383	-4.31499	0.45041
371-1.6897244.3766390.515567381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	36	1	-0.992889	-3.74995	-0.23148
381-3.904033.4186690.8295043915.3519710.461205-0.179454014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	37	1	-1.689724	4.376639	0.515567
39 1 5.351971 0.461205 -0.17945 40 1 4.829315 0.422369 1.50027 41 1 -5.351943 0.460677 -0.18007 42 1 -4.829627 0.422213 1.499777	38	1	-3.90403	3.418669	0.829504
4014.8293150.4223691.50027411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	39	1	5.351971	0.461205	-0.17945
411-5.3519430.460677-0.18007421-4.8296270.4222131.499777	40	1	4.829315	0.422369	1.50027
42 1 -4.829627 0.422213 1.499777	41	1	-5.351943	0.460677	-0.18007
	42	1	-4.829627	0.422213	1.499777

7. Data of POAV angles for corannulene and sumanene fragments in Figure 6 (Figure

(b) Table 1, Entry 7, Sumanene frag.

2S).

(a) Table 1, Entry 6, Corannulene frag.

Figure 2S. POAV angles in the X-ray crystal structure of (a) corannulene (CCDC-1874124),

and (b) sumanene fragments (CCDC-1290159).

8. ¹H NMR and ¹³C NMR spectra for all new compounds.

Compound 1 (¹H NMR spectrum in CDCl₃). 0 -8. 9825 -8. 9715 7.2600 4583 3690 451 3275 275 504 26.1013 8. 9825 8. 9715 4800 32 080 2. 0874 2.0129 2.0397 1. 9666 0. 9942 1.0 12.35 3.6 3.4 9 8.8 8.2 8 7.8 4.2 4 3.8 2.8102 2. 0874 0129 2.0397 10 7 -1 9 8 6 5 4 3 2 1 0 δ/ppm

Compound 7/iso-7 (¹H NMR spectrum in CDCl₃).

40 / 41

9. IR and MS spectra of nona-cycle compound 4.

7

10

13

1443.46

1253.5

1018.23

53.2262

44.4911

34.9814

8

11

14

1361.5

1231.33

640.251

56.9452

41.4999

52.6654

9

12

15

1303.64

1071.26

583.361

40.9308

27.3958

51.0841

4

==== Shimadzu LCMSsolution 分析レポート ====

サンプ^ルID データファイル RA46 〈**クロマトグラム**〉

: : RA468@450oC_002.lcd 分析日時

: 2023/02/17 10:52:39

D:\U00472023_02_17\U0047468@450oC_002.lcr

RA468

lass Calculator							
C4+H1+Br2O4	Ions:	+ - Cha	rges: 1	- 1	Mr 794. 1606 Is	sotopic Ratios:	9
Multiple Ion Charges Type	: +	Ion		m/z	Mass	RI (%)	Calc. MW
Mono-isotopic	+	M+		794.1601	794.1606	48.37	
	+	[M+H]+		795.1679	795.1640	23.34	and the second
Calculate Isotopic Ratio	os +	[M+Na] +		817.1499	796.1591	100.00	
Aono-Isotopic: 794	+ 1606 +	[M+K]+		833.1238	797.1622	46. 11	
Aost Abundant: 796	+	[M+NH4]+		812.1945	798.1583	57.39	View MS Spectra
Average: 796	.6299				800, 1635	5.86	Adduste
laniash	701				801.1665	1.01	ADOULIS
iormula Calculator 755 1304 Mr 75 Mass Type: Mono-teotoor	94.1631 Ion	+ • C	harge: 1 Diff	Adduct: [H Formula	-) [5 hits DBE	Cak. Formulae
formula Calculator 755 : 204 Mr 75	94.1631 Ion	+ • 0	harge: 1	Adduct: H	-	5 hits	
iormula Calculator 755 120-1 Mr 79 Mass Type: Mono-isotopic	94.1631 Ion	# Mass	Darge: 1 Diff	Adduct: [H Formula	<u> </u>	5 hits DBE	Cak. Formulae
iormula Calculator 755 1 204 Mr 79 Mass Type: Mono-isotopic	94.1631 Ion	# Mass 1 794.1631 2 794.1640	Darge: 1 Diff 0.00003 0.00088	Adduct: H Formula C26 H68 O2 S7 Br 2 C41 H48 O4 S Br 2	•	5 hits DBE 8.0 7.0	Cak. Formulae
iormula Calculator 755 1705 Mr 75 Mass Type: Mono-isotopic Error Margin:	94.1631 Ion	 Here Mass 794.1631 794.1640 794.1606 	Darge: 1 Diff 0.00003 0.00088 0.00249	Adduct: H Formula C25 H68 O2 S7 Br2 C41 H48 O4 S Br2 C44 H44 O4 Br2	• - 1 2	5 hits DBE 9.0 7.0 22.0	Cak. Formulae
iormula Calculator <u>PSS 1308</u> Mass Type: Mono-isotopic Error Margin: 5 ppm	94.1631 Ion	 + C Mass 794.1631 794.1640 794.1606 794.1665 	harge: 1 Diff 0.00003 0.00088 0.00249 0.00335	Adduct: H Formula C26 H68 O2 S7 Br 2 C41 H48 O4 S Br 2 C41 H49 O4 Sr 2 C44 H41 O4 Br 2 C23 H72 O2 S8 Br 2	• • • • • • •	5 hits 58E 8.0 7.0 22.0 3.0	Cak. Formulae
iormula Calculator 755 1304 Mass Type: Mono isotopic Error Margin: 5 ppm DBE Range:	94.1631 Ion	 Mass 794.1631 794.1640 794.1640 794.1605 794.1655 794.1597 	Darge: 1 Diff 0.00003 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br 2 C41 H48 O4 S Br2 C41 H44 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	• [1 2 -1	5 hts 986 8.0 7.0 22.0 3.0 3.0 3.0	Cak. Formulae
iormula Calculator 755 1:05 Mr 79 Mass Type: Mono-isotopic Error Margin: 5 ppm DBE Range: [V] Fixed -50.0 -	94.1631 Ion	Mass Mass 794.1631 794.1640 3794.1605 4794.1605 5794.1597	Darge: 1 Diff 0.00003 0.00088 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br2 C41 H48 O4 S Br2 C44 H41 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	۲ []]]]]]]]]]]]]]]]]]	5 hits 8.0 7.0 2.0 3.0 3.0	(Cak. Formulae
iormula Calculator 755 1304 Mr 79 Mass Type: Mono isotopic Error Margin: 5 ppm DBE Range: [V] Fixed -50.0 - Electron Ions:	94.1631 Ion	 Mass 794.1631 794.1640 794.1665 794.1665 794.1597 	harge: 1 Diff 0.00003 0.00088 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br2 C41 H48 O4 S Br2 C41 H48 O4 S Br2 C41 H44 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	• [1 2 -1 -1	5 hits 208E 8.0 7.0 22.0 3.0 -3.0	Cak, Formulae
iormula Calculator <u>PSS 1306</u> Mass Type: Mono-isotopic Error Margin: <u>5</u> ppm DBE Range: [v] Fixed -50.0 - Electron Ions: Both configurations	94.1631 Ion	 Mass 794.1631 794.1640 794.1606 794.1605 794.1597 	Diff 0.00003 0.00088 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br2 C41 H48 O4 S Br2 C41 H41 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	v 1 2 -1	5 hts 206E 8.0 7.0 22.0 3.0 -3.0	Cak. Formulae
iormula Calculator PSS 1304 Mass Type: Mono isotopic Error Margin: 5 ppm DBE Range: [V] Fixed -50.0 - Electron Ions: Both configurations HC Ratio:	94.1631 Ion	Mass Mass 1 794.1631 2 794.1640 3 794.1606 4 794.1665 5 794.1597	harge: 1 Diff 0.00003 0.00088 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br2 C41 H48 O4 S Br2 C44 H41 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	۲) []]]]]]]]]]]]]]]]]]	5 hits 8.0 7.0 2.0 3.0 3.0	(Cak. Formulae
iormula Calculator 755 1:0-6 Mr 73 Mass Type: Mono-isotopic Error Margin: 5 ppm DBE Range: [V] Fixed -50.0 - Electron Ions: Both configurations HC Ratio: [V] Limit 0.0 -	94.1631 Ion	 Mass 794.1631 794.1640 794.1640 794.1665 794.1655 794.1597 	harge: 1 Diff 0.00003 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br2 C41 H48 O4 S Br2 C41 H49 O4 S Br2 C44 H44 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	•	5 hits 8.0 7.0 22.0 3.0 3.0	Cak. Formulae
iormula Calculator Image: 100-100 Mr 75 Mass Type: Mr 75 Mono-isotopic Error Margin: Error Margin: 5 DBE Range: Image: 1000 Ig/ Fixed -50.0 Electron Ions: Electron Sector HC Ratio: Image: 1000 Ig/ Limit 0.0	94.1631 Ion • 50.0 20.0	 Mass 794.1631 794.1640 794.1665 794.1665 794.1597 	harge: 1 Diff 0.00003 0.00249 0.00335 0.00340	Adduct: H Formula C26 H68 O2 S7 Br2 C41 H48 O4 S Br2 C41 H49 O4 S R2 C41 H41 O4 Br2 C23 H72 O2 S8 Br2 C29 H64 O2 S6 Br2	- - - - - - - - - - - - - - - - - - -	5 hts 8.0 7.0 22.0 3.0 3.0	Cak. Formulae