

Supporting Information

for

Electrochemical and spectroscopic properties of twisted dibenzo[*g*,*p*]chrysene derivatives

Tomoya Imai, Ryuhei Akasaka, Naruhiro Yoshida, Toru Amaya and Tetsuo Iwasawa

Beilstein J. Org. Chem. 2022, 18, 963–971. doi:10.3762/bjoc.18.96

Figures S1–S3, Tables S1–S6, general, experimental procedure, and cartesian coordinates of optimized structures obtained based on the theoretical calculation

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

1.	Figures (S1-S3)	S 3
2.	Tables (S1-S6)	S5
3.	General	S7
4.	Experimental Procedure	S8
5.	Cartesian Coordinates of Optimized Structures	S8

1. Figures (S1-S3)

DBC-SMe

Figure S1. CVs and SWVs of DBC-SMe and DBC-S(O)₂Me in CH_2Cl_2 (~1.0 x 10⁻³ M, see 4. Experimental Procedure for detail) including 5.0 x 10⁻² M NBu₄BF₄ as a supporting electrolyte under Ar at 298 K (working electrode: Pt, scan rate: 100 mV/s and 40 mV/s for CV and SWV measurements, respectively).

Figure S2. Orbital drawings of HOMO for DBC derivatives.

Figure S3. Excited spectra for DBC derivatives in CH₂Cl₂.

Excited state	Wavelength (nm)	f			Transition (ψ	$\psi_{\rm xxx} \to \psi_{\rm yyy})$		
1	375.36	0.0409	$165 \rightarrow 167$	-0.33401	$166 \rightarrow 168$	0.61777		
2	367.64	0.1474	$165 \rightarrow 168$	0.22931	$\begin{array}{c} 166 \rightarrow 167 \\ \text{(HOMO \rightarrow LUMO)} \end{array}$	0.66346		
3	348.78	0.0000	$164 \rightarrow 167$	-0.18876	$166 \rightarrow 169$	0.67616		
4	321.69	0.4225	$165 \rightarrow 167$	0.57466	$166 \rightarrow 168$	0.31408	$166 \rightarrow 170$	-0.24859
5	301.66	0.4664	$164 \rightarrow 169$	-0.11143	$165 \rightarrow 168$	0.65429	$\begin{array}{c} 166 \rightarrow 167 \\ \text{(HOMO} \rightarrow \text{LUMO)} \end{array}$	-0.21024

 Table S1. Wavelengths and oscillator strengths (*f*) for DBC-H estimated by TD-DFT calculation

 [TD-B3LYP-D3/6-31G(d,p)// B3LYP/6-31G(d,p)]

Table S2. Wavelengths and oscillator strengths (f) for **DBC-Me** estimated by TD-DFT calculation [TD-B3LYP-D3/6-31G(d,p)// B3LYP/6-31G(d,p)]

Excited state	Wavelength (nm)	f			Transition (ψ	$f_{xxx} \to \psi_{yyy}$	
1	382.98	0.2250	$181 \rightarrow 184$	0.14522	182 →183 (HOMO→LUMO)	0.68676	
2	364.35	0.0181	$181 \rightarrow 183$	-0.40652	$182 \rightarrow 184$	0.57291	
3	344.69	0.0000	$180 \rightarrow 183$	-0.32512	$182 \rightarrow 185$	0.61825	
4	320.20	0.4413	$181 \rightarrow 183$	0.55590	$182 \rightarrow 184$	0.39632	$182 \rightarrow 186 -0.14875$
5	307.82	0.0000	$180 \rightarrow 183$	0.61328	$182 \rightarrow 185$	0.32188	

Table S3. Wavelengths and oscillator strengths (*f*) for **DBC-SMe** estimated by TD-DFT calculation [TD-B3LYP-D3/6-31G(d,p)// B3LYP/6-31G(d,p)]

Excited state	Wavelength (nm)	f			Transition (ψ	$f_{\rm xxx} \to \psi_{\rm yyy})$		
1	386.11	0.1776	$212 \rightarrow 216$	0.15435	$\begin{array}{c} 214 \rightarrow 215 \\ \text{(HOMO} \rightarrow \text{LUMO)} \end{array}$	0.68395		
2	373.77	0.0382	$212 \rightarrow 215$	-0.33988	$214 \rightarrow 216$	0.61244		
3	354.45	0.0000	$208 \rightarrow 215$	-0.21817	$210 \rightarrow 215$	-0.12908	$214 \rightarrow 217$	0.64660
4	341.43	0.0041	$213 \rightarrow 215$	0.69332				
5	328.47	0.3898	$211 \rightarrow 216$	0.10352	$212 \rightarrow 215$	0.58018	$214 \rightarrow 216$	0.32907
					$214 \rightarrow 218$	0.18299		

Excited state	Wavelength (nm)	f			Transition (ψ	$f_{\rm xxx} \to \psi_{\rm yyy})$		
1	393.50	0.1852	$233 \rightarrow 236$	0.14200	$\begin{array}{c} 234 \rightarrow 235 \\ \text{(HOMO} \rightarrow \text{LUMO)} \end{array}$	0.68627		
2	378.99	0.0344	$233 \rightarrow 235$	-0.33512	$234 \rightarrow 236$	0.61613		
3	362.28	0.0000	$232 \rightarrow 235$	0.27025	$234 \rightarrow 237$	0.64431		
4	332.41	0.3147	$233 \rightarrow 235$	0.58566	$234 \rightarrow 236$	0.32549	$234 \rightarrow 238$	0.20022
5	320.89	0.0000	$232 \rightarrow 235$	0.63722	$234 \rightarrow 237$	-0.27031		

Table S4. Wavelengths and oscillator strengths (*f*) for **DBC-Br** estimated by TD-DFT calculation [TD-B3LYP-D3/6-31G(d,p)// B3LYP/6-31G(d,p)]

Table S5. Wavelengths and oscillator strengths (*f*) for **DBC-S(O)**₂**Me** estimated by TD-DFT calculation [TD-B3LYP-D3/6-31G(d,p)// B3LYP/6-31G(d,p)]

Excited state	Wavelength (nm)	f			Transition (ψ	$f_{\rm xxx} \to \psi_{\rm yyy})$		
1	393.30	0.1311	$245 \rightarrow 248$	0.18016	$\begin{array}{c} 246 \rightarrow 247 \\ \text{(HOMO} \rightarrow \text{LUMO)} \end{array}$	0.67649		
2	391.34	0.0269	$245 \rightarrow 247$	-0.30004	$246 \rightarrow 248$	0.63429		
3	375.53	0.0004	$244 \rightarrow 247$	0.19897	$246 \rightarrow 249$	0.67199		
4	341.34	0.3149	$245 \rightarrow 247$	0.60776	$246 \rightarrow 248$	0.29604	$246 \rightarrow 251$	0.18560
5	318.88	0.0003	$242 \rightarrow 248$	-0.11521	$244 \rightarrow 247$	0.65664	$246 \rightarrow 249$	-0.19851

Table S6. Wavelengths and oscillator strengths (*f*) for **DBC-Si** estimated by TD-DFT calculation [TD-B3LYP-D3/6-31G(d,p)// B3LYP/6-31G(d,p)]

Excited state	Wavelength (nm)	f			Transition (ψ_{2}	$\psi_{\rm yyy}$		
1	377.71	0.1275	$195 \rightarrow 198$	0.15828	$\begin{array}{c} 196 \rightarrow 197 \\ (\text{HOMO} \rightarrow \text{LUMO}) \end{array}$	0.66980		
2	373.16	0.0094	$195 \rightarrow 197$	-0.36578	$196 \rightarrow 198$	0.58965		
3	363.25	0.0013	$194 \rightarrow 197$	-0.17595	$196 \rightarrow 199$	0.67802		
4	336.34	0.1321	$195 \rightarrow 197$	0.46872	$195 \rightarrow 198$	-0.10438	$196 \rightarrow 198$	0.34027
			$196 \rightarrow 200$	0.37335				
5	316.65	0.0159	$194 \rightarrow 197$	0.34173	$195 \rightarrow 199$	0.58542	$196 \rightarrow 199$	0.11324

3. General

All the DBC-derivatives reported here were synthesized according to our previous paper.^{S1} The electrochemical studies were performed on a BAS ALS842D voltammetry analyzer. Absorption spectra were measured on a JASCO V-770 spectrometer using a quartz cuvette (1 cm square). Emission spectra were measured on a JASCO FP-8500 spectrometer. Concentration for the spectroscopic measurements is as follows, **DBC-H**: 1.03 x 10⁻⁵ M, **DBC-Me**: 3.97 x 10⁻⁶ M, DBC-SMe: 4.00 x 10⁻⁶ M, DBC-Br: 3.98 x 10⁻⁶ M, DBC-S(O)₂Me: 4.00 x 10⁻⁶ M, and **DBC-Si**: 1.00 x 10⁻⁵ M. Quantum yield was measured based on the absolute quantum yield method using an integrating sphere (JASCO ILF-835). All calculations were conducted using a Gaussian 16 suite program (G16RevC.01).^{S2} In the present study, the optimization for DBC-H(56°)-1 and DBC-H(56°)-2 was performed at the B3LYP/6-31G(d,p) level of theory (the calculation for other DBC derivatives were reported in reference S1). Harmonic vibration frequency analysis was conducted with the optimized structures at the same level of theory to verify all stationary points as local minima (with no imaginary frequency). TD-DFT calculations for DBC-H, DBC-Me, DBC-SMe, DBC-Br, DBC-S(O)₂Me, and DBC-Si based on B3LYP-D3/6-31G(d,p) were performed using the optimized structures based on B3LYP-D3/6-31G(d,p). See also reference S1 for the DFT calculation of DBC-H, DBC-Me, DBC-SMe, DBC-Br, DBC-S(O)₂Me, and DBC-Si.

References

S1. Kamiguchi, S.; Akasaka, R.; Yoshida, N.; Imai, T.; Yamaoka, Y.; Amaya, T.; Iwasawa, T. *Tetrahedron Lett.*, **2022**, *92*, 153664.

S2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

4. Experimental Procedure

Electrochemical experiments: The CVs and SWVs were measured in CH₂Cl₂ containing 5.0 x 10^{-2} M NBu₄BF₄ as a supporting electrolyte under argon at room temperature with a three-electrode system consisting of a platinum working electrode (BAS), a platinum auxiliary electrode (BAS), and an Ag/AgCl (0.01 M) reference electrode (BAS) at 100 mV/s for CV and 40 mV/s for SWV scan rates. Concentration of DBC derivatives is as follows, **DBC-H**: 1.00 x 10^{-3} M, **DBC-Me**: 1.00 x 10^{-3} M, **DBC-SMe**: 0.99 x 10^{-3} M, **DBC-Br**: 0.97 x 10^{-3} M, **DBC-S(O)₂Me**: 1.00 x 10^{-3} M, and **DBC-Si**: 1.00 x 10^{-3} M. Redox potentials are given vs Fc/Fc⁺.

5. Cartesian Coordinates of Optimized Structures

	Coor	dinates (Angst	roms)
Atomic Type	Х	Y	Z
8	-4.645495	-2.786450	2.335174
8	4.485653	-3.043348	-2.415000
8	4.645495	2.786450	2.335174
8	-4.485653	3.043348	-2.415000
6	1.128883	-2.675016	-1.019320
6	2.489014	0.573785	0.305220
6	1.281584	2.604148	0.940113
6	1.281584	1.335774	0.326084
6	2.450967	-0.715770	-0.395075
6	1.200836	-1.408723	-0.408823
6	0.020441	0.695464	-0.040961
6	-0.020441	-0.695464	-0.040961
6	2.223159	-3.278581	-1.629049
6	3.539014	-1.256248	-1.130522
6	3.562065	2.336408	1.591056
6	2.411041	3.144066	1.542292
6	3.418759	-2.540683	-1.681392
6	-3.609720	-1.049532	1.039181

DBC-H(56°)-1 , c	optimized at t	e B3LYP/6-3	1G(d,p) level	of theory.
-------------------------	----------------	-------------	---------------	------------

6	-2.450967	0.715770	-0.395075
6	3.609720	1.049532	1.039181
6	-3.562065	-2.336408	1.591056
6	-1.281584	-1.335774	0.326084
6	-2.489014	-0.573785	0.305220
6	-1.281584	-2.604148	0.940113
6	-3.418759	2.540683	-1.681392
6	-1.128883	2.675016	-1.019320
6	-1.200836	1.408723	-0.408823
6	2.098524	-4.638888	-2.304502
6	-3.539014	1.256248	-1.130522
6	-2.223159	3.278581	-1.629049
6	2.001023	4.298759	3.743524
6	2.384602	4.488021	2.261636
6	-2.411041	-3.144066	1.542292
6	1.089604	-4.605916	-3.468243
6	-2.384602	-4.488021	2.261636
6	-2.098524	4.638888	-2.304502
6	-5.704455	-3.353651	1.566543
6	5.469559	-3.724286	-1.639834
6	1.742646	-5.747537	-1.296680
6	5.704455	3.353651	1.566543
6	1.479183	5.529007	1.586050
6	-1.742646	5.747537	-1.296680
6	-5.469559	3.724286	-1.639834
6	-1.089604	4.605916	-3.468243
6	-1.479183	-5.529007	1.586050
6	-2.001023	-4.298759	3.743524
1	0.166290	-3.167725	-1.080526
1	0.347499	3.146600	1.004562
1	-0.347499	-3.146600	1.004562
1	-0.166290	3.167725	-1.080526
1	3.076840	-4.872630	-2.733627
1	2.023443	5.256654	4.275484
1	2.695539	3.615582	4.239561

1	0.990799	3.884363	3.834046
1	3.406595	4.880699	2.246759
1	1.059573	-5.575898	-3.976856
1	1.362418	-3.843926	-4.204322
1	0.076059	-4.384356	-3.116737
1	-3.406595	-4.880699	2.246759
1	-3.076840	4.872630	-2.733627
1	-6.115871	-2.637102	0.845435
1	-6.486467	-3.638684	2.273850
1	-5.369076	-4.245094	1.020582
1	5.054361	-4.624033	-1.167096
1	5.889133	-3.080328	-0.856892
1	6.265138	-4.015979	-2.329164
1	0.757588	-5.579103	-0.848044
1	2.472940	-5.797698	-0.482406
1	1.718876	-6.724899	-1.791284
1	6.486467	3.638684	2.273850
1	5.369076	4.245094	1.020582
1	6.115871	2.637102	0.845435
1	0.420533	5.255089	1.646929
1	1.733904	5.657672	0.528979
1	1.588500	6.499734	2.080905
1	-2.472940	5.797698	-0.482406
1	-1.718876	6.724899	-1.791284
1	-0.757588	5.579103	-0.848044
1	-5.889133	3.080328	-0.856892
1	-6.265138	4.015979	-2.329164
1	-5.054361	4.624033	-1.167096
1	-0.076059	4.384356	-3.116737
1	-1.059573	5.575898	-3.976856
1	-1.362418	3.843926	-4.204322
1	-1.733904	-5.657672	0.528979
1	-1.588500	-6.499734	2.080905
1	-0.420533	-5.255089	1.646929
1	-0.990799	-3.884363	3.834046

1	-2.023443	-5.256654	4.275484
1	-2.695539	-3.615582	4.239561
1	-4.472349	0.713109	-1.230740
1	-4.509979	-0.452438	1.135441
1	4.509979	0.452438	1.135441
1	4.472349	-0.713109	-1.230740

DBC-H(56°)-2, optimized at the B3LYP/6-31G(d,p) level of theory.

	Cooedinates (Angstroms)		
Atomic Type	Х	Y	Z
8	-4.649443	-2.83332	2.282223
8	4.419558	-3.189585	-2.357886
8	4.649443	2.83332	2.282223
8	-4.419558	3.189585	-2.357886
6	1.101155	-2.686549	-1.017934
6	2.494815	0.54801	0.306606
6	1.308451	2.590753	0.941499
6	1.295332	1.322446	0.32747
6	2.443432	-0.741083	-0.393689
6	1.186201	-1.421069	-0.407437
6	0.027633	0.695215	-0.039575
6	-0.027633	-0.695215	-0.039575
6	2.189129	-3.3014	-1.627663
6	3.525831	-1.292785	-1.129136
6	3.58604	2.29944	1.592442
6	2.443432	3.11896	1.543678
6	3.392297	-2.575908	-1.680006
6	-3.620383	-1.01214	1.040567
6	-2.443432	0.741083	-0.393689
6	3.620383	1.01214	1.040567
6	-3.58604	-2.29944	1.592442
6	-1.295332	-1.322446	0.32747
6	-2.494815	-0.54801	0.306606
6	-1.308451	-2.590753	0.941499

6	-3 392297	2 575908	-1 680006
6	1 101155	2.575700	1.01703/
6	1 186201	1 /21060	0.407437
6	-1.160201	1.421009	-0.407437
0	2.030431	-4.000540	-2.303110
6	-3.525831	1.292785	-1.129136
6	-2.189129	3.3014	-1.627663
6	2.045379	4.277832	3.74491
6	2.430895	4.463116	2.263022
6	-2.443432	-3.11896	1.543678
6	1.041905	-4.61694	-3.466857
6	-2.430895	-4.463116	2.263022
6	-2.050431	4.660346	-2.303116
6	-5.842263	-2.077476	2.386711
6	5.656573	-2.512675	-2.481019
6	1.683105	-5.765254	-1.295294
6	5.842263	2.077476	2.386711
6	1.536292	5.513412	1.587436
6	-1.683105	5.765254	-1.295294
6	-5.656573	2.512675	-2.481019
6	-1.041905	4.61694	-3.466857
6	-1.536292	-5.513412	1.587436
6	-2.045379	-4.277832	3.74491
1	0.133517	-3.169275	-1.07914
1	0.380026	3.142838	1.005948
1	-0.380026	-3.142838	1.005948
1	-0.133517	3.169275	-1.07914
1	3.026277	-4.904194	-2.732241
1	2.077706	5.235443	4.27687
1	2.732791	3.587508	4.240947
1	1.030923	3.873907	3.835432
1	3.457386	4.843585	2.241255
1	1.001844	-5.586559	-3.97547
1	1.322587	-3.857812	-4.202936
1	0.030707	-4.384908	-3.115351
1	-3 457386	-4 843585	2 241255
1	-2.+27200		2.241233

1	-3.026277	4.904194	-2.732241
1	-5.682232	-1.137551	2.930773
1	-6.545238	-2.698109	2.944873
1	-6.266862	-1.84955	1.400135
1	6.105266	-2.302289	-1.501112
1	5.552111	-1.570039	-3.033971
1	6.312973	-3.183006	-3.038505
1	0.699842	-5.586641	-0.846658
1	2.412841	-5.822966	-0.48102
1	1.649227	-6.742318	-1.789898
1	6.545238	2.698109	2.944873
1	6.266862	1.84955	1.400135
1	5.682232	1.137551	2.930773
1	0.474866	5.250458	1.648315
1	1.79233	5.639435	0.530365
1	1.655643	6.482956	2.082291
1	-2.412841	5.822966	-0.48102
1	-1.649227	6.742318	-1.789898
1	-0.699842	5.586641	-0.846658
1	-5.552111	1.570039	-3.033971
1	-6.312973	3.183006	-3.038505
1	-6.105266	2.302289	-1.501112
1	-0.030707	4.384908	-3.115351
1	-1.001844	5.586559	-3.97547
1	-1.322587	3.857812	-4.202936
1	-1.79233	-5.639435	0.530365
1	-1.655643	-6.482956	2.082291
1	-0.474866	-5.250458	1.648315
1	-1.030923	-3.873907	3.835432
1	-2.077706	-5.235443	4.27687
1	-2.732791	-3.587508	4.240947
1	-4.455747	0.743438	-1.194487
1	-4.504968	-0.392028	1.103239
1	4.504968	0.392028	1.103239
1	4.455747	-0.743438	-1.194487